[Xuefeng magnetic needle stone blog] data analysis tool pandas quick start tutorial 1-appetizer

Posted by fatmcgav on Fri, 03 Jan 2020 23:55:21 +0100

brief introduction

Pandas is an open-source Python library for data analysis, and also the most important Open-Source Library for data analysis at present. It can process data similar to spreadsheets, used for fast data loading, operation, alignment, merging, etc. These enhancements are provided for Python, and the data types of pandas are: Series and DataFrame. DataFrame is the entire spreadsheet or rectangular data, while Series is the column of DataFrame. DataFrame can also be considered a collection of dictionaries or Series.

Loading data

load.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author:    xurongzhong#126.com wechat:pythontesting qq:37391319
# qq group: 144081101 591302926 567351477
# CreateDate: 2018-06-07
# load.py

import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

print("\n\n View the first five lines")
print(df.head())

print("\n\n View type")
print(type(df))

print("\n\n View size")
print(df.shape)

print("\n\n Check column names")
print(df.columns)

print("\n\n See dtypes(Column based)")
print(df.dtypes)

print("\n\n View statistics")
print(df.info())

results of enforcement


$ ./load.py 


//View the first five lines
       country continent  year  lifeExp       pop   gdpPercap
0  Afghanistan      Asia  1952   28.801   8425333  779.445314
1  Afghanistan      Asia  1957   30.332   9240934  820.853030
2  Afghanistan      Asia  1962   31.997  10267083  853.100710
3  Afghanistan      Asia  1967   34.020  11537966  836.197138
4  Afghanistan      Asia  1972   36.088  13079460  739.981106


//View type
<class 'pandas.core.frame.DataFrame'>


//View size
(1704, 6)


//Check column names
Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap'], dtype='object')


//View dtypes (column based)
country       object
continent     object
year           int64
lifeExp      float64
pop            int64
gdpPercap    float64
dtype: object


//View statistics
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):
country      1704 non-null object
continent    1704 non-null object
year         1704 non-null int64
lifeExp      1704 non-null float64
pop          1704 non-null int64
gdpPercap    1704 non-null float64
dtypes: float64(2), int64(2), object(2)
memory usage: 80.0+ KB
None
Pandas type Python type
object string
int64 int
float64 float
datetime64 datetime

Columns and cells

col.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author:    xurongzhong#126.com wechat:pythontesting qq:37391319
# qq group: 144081101 591302926 567351477
# CreateDate: 2018-06-07
# col.py

import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

# Column operation
country_df = df['country'] # Column name selection single column

print("\n\n The first 5 lines")
print(country_df.head())

print("\n\n Row and tail 5 rows")
print(country_df.tail())

country_df_dot = df.country # Select column by point number
print("\n\n Select column by point number")
print(country_df_dot.head())

subset = df[['country', 'continent', 'year']] # Select multiple columns
print("\n\n Select multiple columns")
print(subset.head())

results of enforcement

$ ./col.py 


The first 5 lines
0    Afghanistan
1    Afghanistan
2    Afghanistan
3    Afghanistan
4    Afghanistan
Name: country, dtype: object


Row and tail 5 rows
1699    Zimbabwe
1700    Zimbabwe
1701    Zimbabwe
1702    Zimbabwe
1703    Zimbabwe
Name: country, dtype: object


Select column by point number
0    Afghanistan
1    Afghanistan
2    Afghanistan
3    Afghanistan
4    Afghanistan
Name: country, dtype: object


Select multiple columns
       country continent  year
0  Afghanistan      Asia  1952
1  Afghanistan      Asia  1957
2  Afghanistan      Asia  1962
3  Afghanistan      Asia  1967
4  Afghanistan      Asia  1972

row.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author:    xurongzhong#126.com wechat:pythontesting qq:37391319
# qq group: 144081101 591302926 567351477
# CreateDate: 2018-06-07
# row.py

import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

# Line operation, note that df.loc[-1] is illegal
print("\n\n first line")
print(df.loc[0])

print("\n\n Row number")
number_of_rows = df.shape[0]
print(number_of_rows)

last_row_index = number_of_rows - 1
print("\n\n Last line")
print(df.loc[last_row_index])

print("\n\ntail Method to output the last line")
print(df.tail(n=1))

subset_loc = df.loc[0]
subset_head = df.head(n=1)
print("\n\nloc Of type sequence Series")
print(type(subset_loc))

print("\n\nhead The type of is data frame DataFrame")
print(type(subset_head))

print("\n\nloc Select three columns of data frame type DataFrame")
print(df.loc[[0, 99, 999]])
print(type(df.loc[[0, 99, 999]]))

print("\n\niloc Select first line")
print(df.iloc[0])

print("\n\niloc Select three rows")
print(df.iloc[[0, 99, 999]])

results of enforcement


$ ./row.py 


//first line
country      Afghanistan
continent           Asia
year                1952
lifeExp           28.801
pop              8425333
gdpPercap        779.445
Name: 0, dtype: object


//Row number
1704


//Last line
country      Zimbabwe
continent      Africa
year             2007
lifeExp        43.487
pop          12311143
gdpPercap     469.709
Name: 1703, dtype: object


tail Method to output the last line
       country continent  year  lifeExp       pop   gdpPercap
1703  Zimbabwe    Africa  2007   43.487  12311143  469.709298


loc Of type sequence Series
<class 'pandas.core.series.Series'>


head The type of is data frame DataFrame
<class 'pandas.core.frame.DataFrame'>


loc Select three columns of data frame type DataFrame
         country continent  year  lifeExp       pop    gdpPercap
0    Afghanistan      Asia  1952   28.801   8425333   779.445314
99    Bangladesh      Asia  1967   43.453  62821884   721.186086
999     Mongolia      Asia  1967   51.253   1149500  1226.041130
<class 'pandas.core.frame.DataFrame'>


iloc Select first line
country      Afghanistan
continent           Asia
year                1952
lifeExp           28.801
pop              8425333
gdpPercap        779.445
Name: 0, dtype: object


iloc Select three rows
         country continent  year  lifeExp       pop    gdpPercap
0    Afghanistan      Asia  1952   28.801   8425333   779.445314
99    Bangladesh      Asia  1967   43.453  62821884   721.186086
999     Mongolia      Asia  1967   51.253   1149500  1226.041130

mix.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author:    xurongzhong#126.com wechat:pythontesting qq:37391319
# qq group: 144081101 591302926 567351477
# CreateDate: 2018-06-07
# mix.py

import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

# Mixed selection
print("\n\nloc Select coordinates")
print(df.loc[42, 'country'])

print("\n\niloc Select coordinates")
print(df.iloc[42, 0])

print("\n\nloc Select subset")
print(df.loc[[0, 99, 999], ['country', 'lifeExp', 'gdpPercap']])

results of enforcement

#!python

$ ./mix.py 


loc Select coordinates
Angola


iloc Select coordinates
Angola


loc Select subset
         country  lifeExp    gdpPercap
0    Afghanistan   28.801   779.445314
99    Bangladesh   43.453   721.186086
999     Mongolia   51.253  1226.041130

Grouping and aggregation

group.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author:    xurongzhong#126.com wechat:pythontesting qq:37391319
# qq group: 144081101 591302926 567351477
# CreateDate: 2018-06-07
# group.py

import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

print("\n\n Annual per capita output value")
print(df.groupby('year')['lifeExp'].mean())

print("\n\n Group by year")
grouped_year_df = df.groupby('year')
print(type(grouped_year_df))
print(grouped_year_df)

print("\n\nlifeExp")
grouped_year_df_lifeExp = grouped_year_df['lifeExp']
print(type(grouped_year_df_lifeExp))
print(grouped_year_df_lifeExp)

print("\n\n Annual average output value")
mean_lifeExp_by_year = grouped_year_df_lifeExp.mean()
print(mean_lifeExp_by_year)

print("\n\n Group by year and continent")
print(df.groupby(['year', 'continent'])[['lifeExp',
'gdpPercap']].mean())

print("\n\n Count countries per continent")
print(df.groupby('continent')['country'].nunique())

results of enforcement

#!python

$ ./group.py 


//Annual per capita output value
year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
1977    59.570157
1982    61.533197
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, dtype: float64


//Group by year
<class 'pandas.core.groupby.groupby.DataFrameGroupBy'>
<pandas.core.groupby.groupby.DataFrameGroupBy object at 0x7f0e2b0c89e8>


lifeExp
<class 'pandas.core.groupby.groupby.SeriesGroupBy'>
<pandas.core.groupby.groupby.SeriesGroupBy object at 0x7f0e151e2f28>


//Annual average output value
year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
1977    59.570157
1982    61.533197
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, dtype: float64


//Group by year and continent
                  lifeExp     gdpPercap
year continent                         
1952 Africa     39.135500   1252.572466
     Americas   53.279840   4079.062552
     Asia       46.314394   5195.484004
     Europe     64.408500   5661.057435
     Oceania    69.255000  10298.085650
1957 Africa     41.266346   1385.236062
     Americas   55.960280   4616.043733
     Asia       49.318544   5787.732940
     Europe     66.703067   6963.012816
     Oceania    70.295000  11598.522455
1962 Africa     43.319442   1598.078825
     Americas   58.398760   4901.541870
     Asia       51.563223   5729.369625
     Europe     68.539233   8365.486814
     Oceania    71.085000  12696.452430
1967 Africa     45.334538   2050.363801
     Americas   60.410920   5668.253496
     Asia       54.663640   5971.173374
     Europe     69.737600  10143.823757
     Oceania    71.310000  14495.021790
1972 Africa     47.450942   2339.615674
     Americas   62.394920   6491.334139
     Asia       57.319269   8187.468699
     Europe     70.775033  12479.575246
     Oceania    71.910000  16417.333380
1977 Africa     49.580423   2585.938508
     Americas   64.391560   7352.007126
     Asia       59.610556   7791.314020
     Europe     71.937767  14283.979110
     Oceania    72.855000  17283.957605
1982 Africa     51.592865   2481.592960
     Americas   66.228840   7506.737088
     Asia       62.617939   7434.135157
     Europe     72.806400  15617.896551
     Oceania    74.290000  18554.709840
1987 Africa     53.344788   2282.668991
     Americas   68.090720   7793.400261
     Asia       64.851182   7608.226508
     Europe     73.642167  17214.310727
     Oceania    75.320000  20448.040160
1992 Africa     53.629577   2281.810333
     Americas   69.568360   8044.934406
     Asia       66.537212   8639.690248
     Europe     74.440100  17061.568084
     Oceania    76.945000  20894.045885
1997 Africa     53.598269   2378.759555
     Americas   71.150480   8889.300863
     Asia       68.020515   9834.093295
     Europe     75.505167  19076.781802
     Oceania    78.190000  24024.175170
2002 Africa     53.325231   2599.385159
     Americas   72.422040   9287.677107
     Asia       69.233879  10174.090397
     Europe     76.700600  21711.732422
     Oceania    79.740000  26938.778040
2007 Africa     54.806038   3089.032605
     Americas   73.608120  11003.031625
     Asia       70.728485  12473.026870
     Europe     77.648600  25054.481636
     Oceania    80.719500  29810.188275


//Count countries per continent
continent
Africa      52
Americas    25
Asia        33
Europe      30
Oceania      2
Name: country, dtype: int64

Basic drawing


import pandas as pd

df = pd.read_csv(r"../data/gapminder.tsv", sep='\t') 

global_yearly_life_expectancy = df.groupby('year')['lifeExp'].mean()
print(global_yearly_life_expectancy)

global_yearly_life_expectancy.plot()

image.png

Topics: Python github