Problem B of 2021 Higher Education Society Cup National College Students' mathematical modeling competition problem 2 solution ideas for ethanol coupling preparation of C4 olefins

Posted by shezz on Sun, 07 Nov 2021 06:31:34 +0100

The following table "sheet2" is sorted out by A1~A14 (loading mode I) in Annex 1 "performance data sheet":

wt%Co/SiO2Mass ratio of Co/SiO2 and HAPTotal catalystEthanol concentrationtemperatureEthanol conversion (%)C4 olefin selectivity (%)C4 olefin yield (%)
0.514001.682504.0 9.6 0.386665445
0.514001.6827512.1 8.6 1.042826728
0.514001.6830029.5 10.7 3.159887673
0.514001.6832543.3 18.9 8.184209991
0.514001.6835060.5 27.3 16.47764673
0.514001.6840088.4 41.0 36.27781909
10.49251001.682502.5 1.9 0.047111815
10.49251001.682755.3 2.6 0.136038297
10.49251001.6830010.2 3.6 0.366488509
10.49251001.6835024.0 10.8 2.602654614
10.49251001.6840053.6 22.3 11.95620228
10.5556 1401.682500.2 0.1 0.000227692
10.5556 1401.682750.5 1.0 0.00516312
10.5556 1401.683001.6 1.8 0.029257461
10.5556 1401.683508.2 4.4 0.357029779
10.5556 1401.6840032.6 7.9 2.584664401
111000.325019.7 5.8 1.130236757
111000.327529.0 6.6 1.90534913
111000.330040.0 8.8 3.534617971
111000.335058.6 18.6 10.9239714
111000.340076.0 33.3 25.27911589
111000.92506.3 5.6 0.352760989
111000.92758.8 8.5 0.746485761
111000.930013.2 13.8 1.821344417
111000.935031.7 25.9 8.212479623
111000.940056.1 41.4 23.24340866
111001.682501.4 6.2 0.088953466
111001.682753.5 8.1 0.281711425
111001.683006.9 11.2 0.77579429
111001.6835019.9 22.3 4.432477459
111001.6840044.5 36.3 16.16619292
111002.12502.1 5.4 0.110870727
111002.12753.0 9.7 0.290648933
111002.13004.7 16.1 0.761401301
111002.135013.4 31.0 4.157107976
111002.140040.8 42.0 17.15112728
114000.92509.7 5.5 0.531815513
114000.927519.2 8.0 1.546649604
114000.930029.3 17.0 4.975464725
114000.932537.6 28.7 10.79274197
114000.935048.9 36.9 18.03330095
114000.940083.7 53.4 44.72805978
114000.945086.4 49.9 43.11844167
114001.682502.07 34.1 0.703871198
114001.682755.85 37.4 2.190299165
114001.6830014.97 46.9 7.026397666
114001.6832519.68 49.7 9.781635471
114001.6835036.80 47.2 17.37376011
12.03031001.682501.3 5.2 0.069906624
12.03031001.682752.3 7.6 0.175675746
12.03031001.683004.1 12.7 0.518101314
12.03031001.6835014.6 23.5 3.43425681
12.03031001.6840040.0 27.9 11.17716077
214000.325014.8 2.0 0.289828794
214000.327512.4 6.7 0.826196719
214000.330020.8 10.1 2.105827939
214000.332528.3 13.9 3.929155582
214000.335036.8 18.8 6.902171053
214000.340076.0 38.2 29.06238183
214001.682504.60 18.1 0.8317616
214001.6827517.20 17.3 2.971389123
214001.6830038.92 19.6 7.62876008
214001.6832556.38 30.6 17.26430932
214001.6835067.88 39.1 26.54080464
511002.12500.3 2.2 0.007007211
511002.12751.0 1.7 0.016754982
511002.13001.7 2.2 0.036557463
511002.13509.0 3.3 0.297621751
511002.140028.6 10.3 2.942362809
514001.6825013.4 3.3 0.441850092
514001.6827512.8 7.1 0.907450345
514001.6830025.5 7.2 1.829407723
514001.6835055.8 10.7 5.937910401
514001.6840083.3 37.3 31.11366512

All parameters affecting ethanol conversion and C4 olefin selectivity are used for fitting:

xx1: Co/SiO2

xx2: mass ratio of Co/SiO2 and HAP

xx3: total catalyst

xx4: ethanol concentration

xx5: temperature

Ethanol conversion:    y1=f(xx1,xx2,xx3,xx4,xx5) (Universal Taylor formula power series is used, and the fitting formula is shown in the code)

C4 olefin selectivity: y2=f(xx1,xx2,xx3,xx4,xx5) (Universal Taylor formula power series is used, and the fitting formula is shown in the code)

Three order Taylor formula expansion
!!!using["luopt","math"]; //using namespace std 
objective function (xx1,xx2,xx3,xx4,xx5,  //There are 101 fitting parameters in total
    a,a1,a2,a3,a4,a5,
    a11,a12,a13,a14,a15,
        a22,a23,a24,a25,
            a33,a34,a35,
                a44,a45,
                    a55,
    a111,a112,a113,a114,a115,
         a122,a123,a124,a125,
              a133,a134,a135,
                   a144,a145,
                        a155,
    a211,a212,a213,a214,a215,
         a222,a223,a224,a225,
              a233,a234,a235,
                   a244,a245,
                        a255,
    a311,a312,a313,a314,a315,
         a322,a323,a324,a325,
              a333,a334,a335,
                   a344,a345,
                        a355,
    a411,a412,a413,a414,a415,
         a422,a423,a424,a425,
              a433,a434,a435,
                   a444,a445,
                        a455,
    a511,a512,a513,a514,a515,
         a522,a523,a524,a525,
              a533,a534,a535,
                   a544,a545,
                        a555
    : i,s,x1,x2,x3,x4,x5,y1,y2,py,pc : tyArray,max)=
{
    i=-1, s=0, (++i<max).while{
        x1=tyArray(i,0)-xx1, x2=tyArray(i,1)-xx2, x3=tyArray(i,2)-xx3, x4=tyArray(i,3)-xx4, x5=tyArray(i,4)-xx5, py=tyArray(i,5), pc=tyArray(i,6),
        y1= a+a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+
            a11*x1*x1+a12*x1*x2+a13*x1*x3+a14*x1*x4+a15*x1*x5+
                      a22*x2*x2+a23*x2*x3+a24*x2*x4+a25*x2*x5+
                                a33*x3*x3+a34*x3*x4+a35*x3*x5+
                                          a44*x4*x4+a45*x4*x5+
                                                    a55*x5*x5+ 
         a111*x1*x1*x1+a112*x1*x1*x2+a113*x1*x1*x3+a114*x1*x1*x4+a115*x1*x1*x5+
                       a122*x1*x2*x2+a123*x1*x2*x3+a124*x1*x2*x4+a125*x1*x2*x5+
                                     a133*x1*x3*x3+a134*x1*x3*x4+a135*x1*x3*x5+
                                                   a144*x1*x4*x4+a145*x1*x4*x5+
                                                                 a155*x1*x5*x5+
         a211*x2*x1*x1+a212*x2*x1*x2+a213*x2*x1*x3+a214*x2*x1*x4+a215*x2*x1*x5+
                       a222*x2*x2*x2+a223*x2*x2*x3+a224*x2*x2*x4+a225*x2*x2*x5+
                                     a233*x2*x3*x3+a234*x2*x3*x4+a235*x2*x3*x5+
                                                   a244*x2*x4*x4+a245*x2*x4*x5+
                                                                 a255*x2*x5*x5+
         a311*x3*x1*x1+a312*x3*x1*x2+a313*x3*x1*x3+a314*x3*x1*x4+a315*x3*x1*x5+
                       a322*x3*x2*x2+a323*x3*x2*x3+a324*x3*x2*x4+a325*x3*x2*x5+
                                     a333*x3*x3*x3+a334*x3*x3*x4+a335*x3*x3*x5+
                                                   a344*x3*x4*x4+a345*x3*x4*x5+
                                                                 a355*x3*x5*x5+
         a411*x4*x1*x1+a412*x4*x1*x2+a413*x4*x1*x3+a414*x4*x1*x4+a415*x4*x1*x5+
                       a422*x4*x2*x2+a423*x4*x2*x3+a424*x4*x2*x4+a425*x4*x2*x5+
                                     a433*x4*x3*x3+a434*x4*x3*x4+a435*x4*x3*x5+
                                                   a444*x4*x4*x4+a445*x4*x4*x5+
                                                                 a455*x4*x5*x5+
         a511*x5*x1*x1+a512*x5*x1*x2+a513*x5*x1*x3+a514*x5*x1*x4+a515*x5*x1*x5+
                       a522*x5*x2*x2+a523*x5*x2*x3+a524*x5*x2*x4+a525*x5*x2*x5+
                                     a533*x5*x3*x3+a534*x5*x3*x4+a535*x5*x3*x5+
                                                   a544*x5*x4*x4+a545*x5*x4*x5+
                                                                 a555*x5*x5*x5,
        s=s+[y1-py]^2    //Fitting ethanol conversion
        //S = S + [Y1 PC] ^ 2 / / fit C4 olefin selectivity
    },
    sqrt[s/max]          //Mean square deviation RMSE is the value of objective function
};
main(::tyArray,max)=
{
    tyArray=matrix{ //Storage of experimental data: use loading mode I to store all data
        "
0.5	1	400	1.68	250	4.0 	9.6 
0.5	1	400	1.68	275	12.1 	8.6 
0.5	1	400	1.68	300	29.5 	10.7 
0.5	1	400	1.68	325	43.3 	18.9 
0.5	1	400	1.68	350	60.5 	27.3 
0.5	1	400	1.68	400	88.4 	41.0 
1	0.4925	100	1.68	250	2.5 	1.9 
1	0.4925	100	1.68	275	5.3 	2.6 
... ...((omitted)
        "
    },
    len[tyArray,0,&max],
    Opt1[@objective function , optmax,1000, optmode,20, optdeep,20, optwaysimdeep, optwayconfra, optwaylme] //Global optimization of Opt1 function
};

Results and discussion:

Optimal parameters and mean square deviation RMSE corresponding to ethanol conversion Y1:

1.605961168999771         -0.4410695905557486       235.7757505227786         -0.329837112872408        89.78598768229873         20.05502365079599         -42.76413669021677        -7.744783802865953        -0.330658787799879        -20.91358757136002        -0.3520691839528313       -9.053272922935264        34.03445937950385         -6.688818825087674e-002   1.910450081826346         7.52417263883647e-002     5.360893240121412         2.094748794553468e-002    37.73934747147025         -0.1292497811475342       -4.147831556037419e-004   -0.2749634559384725       -1.016271325893973e-003   -12.45723836096927        -0.1074117654887022       1.329260041868394e-003    -8.50723004489431         19.3040038433537          -2.775212715667194e-002   -0.9514198268894782       -5.376838367861148e-002   -4.567590785407559        1.656476334631148e-002    23.24778568424907         5.540662101179693e-002    4.720650275633447e-004    3.070455686518996e-002    -5.304744078555087e-004   6.000438180572427         2.916826412249359e-002    -4.025194873891306e-006   -4.553899811798563        -29.45554646556685        -0.143965735216047        -9.907859318733358        1.506220580849777e-002    -1.542941119693729        7.738831790881103e-002    -7.005988988762844        -7.60327324504986e-002    6.072570904512441e-004    0.2387348474041152        1.673927632412995e-004    37.14253203210593         -0.3207121128426113       2.668094958762711e-004    6.054872996553735e-002    7.794022905759623e-002    -3.139725033185572e-004   1.289530835792764e-003    -1.743785151081295e-004   6.347384976815082e-002    -4.195545814258753e-004   -2.697575089708201e-002   1.229189010048387e-003    -1.105420561442776e-006   -2.7800429608818e-003     2.426192417104856e-006    -4.16072215526872e-002    -3.432332997494584e-004   2.851780024548635e-007    5.263445716294873         32.83044672374795         1.280067392340407e-002    -17.94368059692175        -0.1385037031061965       2.731682565063538         1.184440508984389e-002    -8.015762476802667        0.1307452215133851        9.78861155011708e-004     -2.520280926166166e-002   1.489784516006709e-003    -6.360844348307658        -2.771473551933863e-002   5.634778544953946e-005    2.98656815200299e-002     2.563295397047698e-002    5.667535852364258e-004    2.230235061923244e-002    6.949791572104501e-005    0.1363657902506849        -1.304588388846196e-003   6.304769126477201e-002    1.485212688711085e-004    1.304223398190621e-005    -7.456617386292806e-005   -1.940980567767639e-006   1.187675828942093e-002    7.007649927097195e-004    -2.573778942035362e-006   3.872971760941088

Optimal parameters and mean square deviation RMSE corresponding to C4 olefin selectivity Y2:

0.6291493182031664        0.2958183812514781        -0.4652893843549317       0.7622062674553209        392.0915498191997         -12.12997297477396        -2.722118671840135        -1.434666274768651        -6.296875182924813e-002   19.16546798801177         0.1576626739540456        -9.473338892189091        -91.28865158923242        -9.580403804322646e-002   39.14814933931461         0.1088834405161888        83.85524812061144         0.6508381048478721        23.19673012324472         0.2889415751716025        -1.517196432282561e-003   0.1550064281119293        -3.905615672075377e-003   41.58590589551277         0.2804256438228481        -1.612752851575893e-003   11.47372993071932         -41.1001221097123         -0.1178354186790367       -0.1339223958708456       5.732395276741618e-002    27.98592837522371         0.5915671407208571        -9.50722923477921         0.6845348790491092        -4.674310768122246e-004   -0.1259889637267923       -9.473077509356255e-003   24.03027817441679         -0.3709244874517346       1.94356129101405e-003     -14.78623371224686        25.92593235572944         -0.2855033845735219       -12.53246596351226        -0.7067104769855241       -3.484569374140125        0.2524720887210766        6.452561996215707         9.288059203984306e-003    1.019750138893331e-003    0.1777795873679074        8.12498844204392e-004     16.50168647446635         0.2621577359139685        -5.120275859213446e-004   7.284282071445269e-002    0.3431359163170912        8.541396344568307e-004    -0.1116510982221482       1.568480263232336e-003    -0.5908786285261998       3.49638380764357e-004     -0.25563038379701         3.970640203357752e-003    -9.392195530317841e-007   4.623999241835095e-004    6.856533700992917e-006    -2.584985495795081e-002   2.851594565138132e-003    -9.94157221748607e-006    -0.2022772396681483       -55.01685449273354        -7.523894405880521e-002   15.41134103814506         0.6481539820154305        -99.85271827848968        0.1309466603197193        -31.7029427792642         1.185145217235263         7.809158942324601e-004    -0.5676232287558368       -3.078487970836266e-003   9.860307453096967         -2.979096768654461e-002   -1.165012792165202e-003   -5.944528957575301e-002   -0.3523595373494553       8.180793646082381e-003    -0.1834684331576924       -1.679406475817102e-003   -0.1798901138165366       -2.368847815176337e-004   -1.816171626152732        -7.525569785629429e-005   -5.01446491627077e-006    -2.066878499250355e-004   9.82582478116308e-006     1.858963080314847e-002    1.00248221936984e-003     -1.228544743091241e-005   2.394257044563218

Due to many parameters and long time-consuming, take the above results when the output of Opt::ShowMin is stable (more than one day).

Not running for many times due to long time consuming; If multiple computers run at the same time, there may be better results.

Because the value of the objective function is slightly larger (the mean square deviation RMSE is 3.87 (corresponding to Y1) and 2.39 (corresponding to Y2)), it shows that the expansion accuracy of the third-order Taylor formula is poor, and the expansion of the fourth-order Taylor formula will have better results, but the fitting parameters will increase to 476 and the time will be longer.

Calculate the maximum C4 olefin yield (Y1*Y2) from the above fitting parameters, and the best parameters xx1, XX2, XX3, xx4 and XX5 can be obtained.

Three level Taylor formula expansion, optimization and optimization C4 Olefin yield
!!!using["luopt","math"];; //using namespace std 
init(::       //Fitting parameter assignment
    aa1,aa2,aa3,aa4,aa5,
    a,a1,a2,a3,a4,a5,
    a11,a12,a13,a14,a15,
        a22,a23,a24,a25,
            a33,a34,a35,
                a44,a45,
                    a55,
    a111,a112,a113,a114,a115,
         a122,a123,a124,a125,
              a133,a134,a135,
                   a144,a145,
                        a155,
    a211,a212,a213,a214,a215,
         a222,a223,a224,a225,
              a233,a234,a235,
                   a244,a245,
                        a255,
    a311,a312,a313,a314,a315,
         a322,a323,a324,a325,
              a333,a334,a335,
                   a344,a345,
                        a355,
    a411,a412,a413,a414,a415,
         a422,a423,a424,a425,
              a433,a434,a435,
                   a444,a445,
                        a455,
    a511,a512,a513,a514,a515,
         a522,a523,a524,a525,
              a533,a534,a535,
                   a544,a545,
                        a555,
    bb1,bb2,bb3,bb4,bb5,
    b,b1,b2,b3,b4,b5,
    b11,b12,b13,b14,b15,
        b22,b23,b24,b25,
            b33,b34,b35,
                b44,b45,
                    b55,
    b111,b112,b113,b114,b115,
         b122,b123,b124,b125,
              b133,b134,b135,
                   b144,b145,
                        b155,
    b211,b212,b213,b214,b215,
         b222,b223,b224,b225,
              b233,b234,b235,
                   b244,b245,
                        b255,
    b311,b312,b313,b314,b315,
         b322,b323,b324,b325,
              b333,b334,b335,
                   b344,b345,
                        b355,
    b411,b412,b413,b414,b415,
         b422,b423,b424,b425,
              b433,b434,b435,
                   b444,b445,
                        b455,
    b511,b512,b513,b514,b515,
         b522,b523,b524,b525,
              b533,b534,b535,
                   b544,b545,
                        b555) =
  new[real_s,101].SetArray[
  "
  1.605961168999771         -0.4410695905557486       235.7757505227786  ... ...(Put the corresponding here Y1 Output results of)
  "].in[0 :
    &aa1,&aa2,&aa3,&aa4,&aa5,
    &a,&a1,&a2,&a3,&a4,&a5,
    &a11,&a12,&a13,&a14,&a15,
        &a22,&a23,&a24,&a25,
            &a33,&a34,&a35,
                &a44,&a45,
                    &a55,
    &a111,&a112,&a113,&a114,&a115,
         &a122,&a123,&a124,&a125,
              &a133,&a134,&a135,
                   &a144,&a145,
                        &a155,
    &a211,&a212,&a213,&a214,&a215,
         &a222,&a223,&a224,&a225,
              &a233,&a234,&a235,
                   &a244,&a245,
                        &a255,
    &a311,&a312,&a313,&a314,&a315,
         &a322,&a323,&a324,&a325,
              &a333,&a334,&a335,
                   &a344,&a345,
                        &a355,
    &a411,&a412,&a413,&a414,&a415,
         &a422,&a423,&a424,&a425,
              &a433,&a434,&a435,
                   &a444,&a445,
                        &a455,
    &a511,&a512,&a513,&a514,&a515,
         &a522,&a523,&a524,&a525,
              &a533,&a534,&a535,
                   &a544,&a545,
                        &a555],
  new[real_s,101].SetArray[
  "
  0.6291493182031664        0.2958183812514781        -0.4652893843549317  ... ...(Put the corresponding here Y1 Output results of)

  "].in[0 :
    &bb1,&bb2,&bb3,&bb4,&bb5,
    &b,&b1,&b2,&b3,&b4,&b5,
    &b11,&b12,&b13,&b14,&b15,
        &b22,&b23,&b24,&b25,
            &b33,&b34,&b35,
                &b44,&b45,
                    &b55,
    &b111,&b112,&b113,&b114,&b115,
         &b122,&b123,&b124,&b125,
              &b133,&b134,&b135,
                   &b144,&b145,
                        &b155,
    &b211,&b212,&b213,&b214,&b215,
         &b222,&b223,&b224,&b225,
              &b233,&b234,&b235,
                   &b244,&b245,
                        &b255,
    &b311,&b312,&b313,&b314,&b315,
         &b322,&b323,&b324,&b325,
              &b333,&b334,&b335,
                   &b344,&b345,
                        &b355,
    &b411,&b412,&b413,&b414,&b415,
         &b422,&b423,&b424,&b425,
              &b433,&b434,&b435,
                   &b444,&b445,
                        &b455,
    &b511,&b512,&b513,&b514,&b515,
         &b522,&b523,&b524,&b525,
              &b533,&b534,&b535,
                   &b544,&b545,
                        &b555];;
f(xx1,xx2,xx3,xx4,xx5  //objective function 
  : x1,x2,x3,x4,x5, y1, y2
  : aa1,aa2,aa3,aa4,aa5,
    a,a1,a2,a3,a4,a5,
    a11,a12,a13,a14,a15,
        a22,a23,a24,a25,
            a33,a34,a35,
                a44,a45,
                    a55,
    a111,a112,a113,a114,a115,
         a122,a123,a124,a125,
              a133,a134,a135,
                   a144,a145,
                        a155,
    a211,a212,a213,a214,a215,
         a222,a223,a224,a225,
              a233,a234,a235,
                   a244,a245,
                        a255,
    a311,a312,a313,a314,a315,
         a322,a323,a324,a325,
              a333,a334,a335,
                   a344,a345,
                        a355,
    a411,a412,a413,a414,a415,
         a422,a423,a424,a425,
              a433,a434,a435,
                   a444,a445,
                        a455,
    a511,a512,a513,a514,a515,
         a522,a523,a524,a525,
              a533,a534,a535,
                   a544,a545,
                        a555,
    bb1,bb2,bb3,bb4,bb5,
    b,b1,b2,b3,b4,b5,
    b11,b12,b13,b14,b15,
        b22,b23,b24,b25,
            b33,b34,b35,
                b44,b45,
                    b55,
    b111,b112,b113,b114,b115,
         b122,b123,b124,b125,
              b133,b134,b135,
                   b144,b145,
                        b155,
    b211,b212,b213,b214,b215,
         b222,b223,b224,b225,
              b233,b234,b235,
                   b244,b245,
                        b255,
    b311,b312,b313,b314,b315,
         b322,b323,b324,b325,
              b333,b334,b335,
                   b344,b345,
                        b355,
    b411,b412,b413,b414,b415,
         b422,b423,b424,b425,
              b433,b434,b435,
                   b444,b445,
                        b455,
    b511,b512,b513,b514,b515,
         b522,b523,b524,b525,
              b533,b534,b535,
                   b544,b545,
                        b555) =
{
    x1=xx1-aa1, x2=xx2-aa2, x3=xx3-aa3, x4=xx4-aa4, x5=xx5-aa5,
    y1= a+a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+
        a11*x1*x1+a12*x1*x2+a13*x1*x3+a14*x1*x4+a15*x1*x5+
                  a22*x2*x2+a23*x2*x3+a24*x2*x4+a25*x2*x5+
                            a33*x3*x3+a34*x3*x4+a35*x3*x5+
                                      a44*x4*x4+a45*x4*x5+
                                                a55*x5*x5+ 
     a111*x1*x1*x1+a112*x1*x1*x2+a113*x1*x1*x3+a114*x1*x1*x4+a115*x1*x1*x5+
                   a122*x1*x2*x2+a123*x1*x2*x3+a124*x1*x2*x4+a125*x1*x2*x5+
                                 a133*x1*x3*x3+a134*x1*x3*x4+a135*x1*x3*x5+
                                               a144*x1*x4*x4+a145*x1*x4*x5+
                                                             a155*x1*x5*x5+
     a211*x2*x1*x1+a212*x2*x1*x2+a213*x2*x1*x3+a214*x2*x1*x4+a215*x2*x1*x5+
                   a222*x2*x2*x2+a223*x2*x2*x3+a224*x2*x2*x4+a225*x2*x2*x5+
                                 a233*x2*x3*x3+a234*x2*x3*x4+a235*x2*x3*x5+
                                               a244*x2*x4*x4+a245*x2*x4*x5+
                                                             a255*x2*x5*x5+
     a311*x3*x1*x1+a312*x3*x1*x2+a313*x3*x1*x3+a314*x3*x1*x4+a315*x3*x1*x5+
                   a322*x3*x2*x2+a323*x3*x2*x3+a324*x3*x2*x4+a325*x3*x2*x5+
                                 a333*x3*x3*x3+a334*x3*x3*x4+a335*x3*x3*x5+
                                               a344*x3*x4*x4+a345*x3*x4*x5+
                                                             a355*x3*x5*x5+
     a411*x4*x1*x1+a412*x4*x1*x2+a413*x4*x1*x3+a414*x4*x1*x4+a415*x4*x1*x5+
                   a422*x4*x2*x2+a423*x4*x2*x3+a424*x4*x2*x4+a425*x4*x2*x5+
                                 a433*x4*x3*x3+a434*x4*x3*x4+a435*x4*x3*x5+
                                               a444*x4*x4*x4+a445*x4*x4*x5+
                                                             a455*x4*x5*x5+
     a511*x5*x1*x1+a512*x5*x1*x2+a513*x5*x1*x3+a514*x5*x1*x4+a515*x5*x1*x5+
                   a522*x5*x2*x2+a523*x5*x2*x3+a524*x5*x2*x4+a525*x5*x2*x5+
                                 a533*x5*x3*x3+a534*x5*x3*x4+a535*x5*x3*x5+
                                               a544*x5*x4*x4+a545*x5*x4*x5+
                                                             a555*x5*x5*x5,
    x1=xx1-bb1, x2=xx2-bb2, x3=xx3-bb3, x4=xx4-bb4, x5=xx5-bb5,
    y2= b+b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+
        b11*x1*x1+b12*x1*x2+b13*x1*x3+b14*x1*x4+b15*x1*x5+
                  b22*x2*x2+b23*x2*x3+b24*x2*x4+b25*x2*x5+
                            b33*x3*x3+b34*x3*x4+b35*x3*x5+
                                      b44*x4*x4+b45*x4*x5+
                                                b55*x5*x5+ 
     b111*x1*x1*x1+b112*x1*x1*x2+b113*x1*x1*x3+b114*x1*x1*x4+b115*x1*x1*x5+
                   b122*x1*x2*x2+b123*x1*x2*x3+b124*x1*x2*x4+b125*x1*x2*x5+
                                 b133*x1*x3*x3+b134*x1*x3*x4+b135*x1*x3*x5+
                                               b144*x1*x4*x4+b145*x1*x4*x5+
                                                             b155*x1*x5*x5+
     b211*x2*x1*x1+b212*x2*x1*x2+b213*x2*x1*x3+b214*x2*x1*x4+b215*x2*x1*x5+
                   b222*x2*x2*x2+b223*x2*x2*x3+b224*x2*x2*x4+b225*x2*x2*x5+
                                 b233*x2*x3*x3+b234*x2*x3*x4+b235*x2*x3*x5+
                                               b244*x2*x4*x4+b245*x2*x4*x5+
                                                             b255*x2*x5*x5+
     b311*x3*x1*x1+b312*x3*x1*x2+b313*x3*x1*x3+b314*x3*x1*x4+b315*x3*x1*x5+
                   b322*x3*x2*x2+b323*x3*x2*x3+b324*x3*x2*x4+b325*x3*x2*x5+
                                 b333*x3*x3*x3+b334*x3*x3*x4+b335*x3*x3*x5+
                                               b344*x3*x4*x4+b345*x3*x4*x5+
                                                             b355*x3*x5*x5+
     b411*x4*x1*x1+b412*x4*x1*x2+b413*x4*x1*x3+b414*x4*x1*x4+b415*x4*x1*x5+
                   b422*x4*x2*x2+b423*x4*x2*x3+b424*x4*x2*x4+b425*x4*x2*x5+
                                 b433*x4*x3*x3+b434*x4*x3*x4+b435*x4*x3*x5+
                                               b444*x4*x4*x4+b445*x4*x4*x5+
                                                             b455*x4*x5*x5+
     b511*x5*x1*x1+b512*x5*x1*x2+b513*x5*x1*x3+b514*x5*x1*x4+b515*x5*x1*x5+
                   b522*x5*x2*x2+b523*x5*x2*x3+b524*x5*x2*x4+b525*x5*x2*x5+
                                 b533*x5*x3*x3+b534*x5*x3*x4+b535*x5*x3*x5+
                                               b544*x5*x4*x4+b545*x5*x4*x5+
                                                             b555*x5*x5*x5,
    -y1*y2/100  //The negative value of C4 olefin yield is the objective function value
};
Opt1[@f, optrange: 0.4,5.1; 0.4,2.1; 90.0,410.0; 0.2,2.2; 230.0, 470.0]; //Solve within the specified range, otherwise the error will increase

Results (xx1,xx2,xx3,xx4,xx5 and objective function values) and discussion:

4.037060310750474         2.099999996638691         409.9999994374398         0.7728448126139009        469.9999989999984         -5093.709888185105

From the fitting results, it can be seen that the objective function value of C4 olefin yield exceeds 100%, which is obviously not in line with the actual situation, but it still has guiding significance for experimental design.

The optimum value of xx1: Co/SiO2 (four parameters of 0.5, 1, 2 and 5 are provided by the experimental data) is around 4.0.

The optimal value of the mass ratio of xx2: Co/SiO2 and HAP (the experimental data provides four parameters: 0.4925, 0.5556, 1 and 2.0303) is at the upper limit of the set parameter, and this parameter should be added for the experiment.

xx3: the optimum value of the total amount of catalyst (three parameters of 100, 140 and 400 are provided in the experimental data) is at the upper limit of the set parameter, and this parameter should be added for the experiment.

xx4: ethanol concentration (the experimental data provide four parameters: 0.3, 0.9, 1.68 and 2.1). The best value is around 0.77.

xx5: the optimal value of temperature (more experimental data are provided) is at the upper limit of the set parameter. If conditions permit, the parameter shall be increased for experiment.

The optimum value is obtained under the specified conditions (the mass ratio of Co/SiO2 and HAP is 1 and the total amount of catalyst is 100):

Opt1[@f, optwaycom, optrange: 0.4,5.1; 0.999,1.001; 99.999,100.0; 0.3,2.2; 230.0, 470.0]; // Solve within the specified range, otherwise the error will increase

Results (xx1,xx2,xx3,xx4,xx5 and objective function value):

0.8439086100949256        1.000999999653274         99.99900080078913         0.672269893443885         459.2752186129222         -34.03535778605701

Guess: if   xx1,xx2,xx3,xx4   With more data, the fitting result may be better.

The above discussion is for reference only.

Topics: script