*** Code analysis has not been done yet. It needs to be supplemented if necessary. Please specify the contents that need to be supplemented in the comment area.
LCS | longest common subsequence
Problem description | Given two strings A and B with lengths of N and M respectively, find the longest string length of both A subsequence and B subsequence. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int LCS(int[] arrn, int[] arrm) { int[][] dp = new int[arrn.length+1][arrm.length+1]; for(int i=1; i<=arrn.length; ++i) { for(int j=1; j<=arrm.length; ++j) { if(arrn[i-1] == arrm[j-1]) dp[i][j] = dp[i-1][j-1]+1; else dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]); } } return dp[arrn.length][arrm.length]; }
- Optimized version
public static int LCS(int[] arrn, int[] arrm) { int[][] dp = new int[2][arrm.length+1]; for(int i=1; i<=arrn.length; ++i) { int cur = i%2, prev = (i-1)%2; for(int j=1; j<=arrm.length; ++j) { if(arrn[i-1] == arrm[j-1]) dp[cur][j] = dp[prev][j-1]+1; else dp[cur][j] = Math.max(dp[prev][j], dp[cur][j-1]); } } return dp[arrn.length%2][arrm.length]; }
LIS | longest ascending subsequence
Problem description | Given A string A of length N, find the longest length of the monotonically increasing subsequence. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int LIS(int[] arr) { int[] dp = new int[arr.length]; Arrays.fill(dp, 1); int ans = dp[0]; for(int i=1; i<arr.length; ++i) { for(int j=0; j<i; ++j) { if(arr[i] > arr[j]) dp[i] = Math.max(dp[i], dp[j]+1); } ans = Math.max(ans, dp[i]); } return ans; }
LCIS | longest common ascending subsequence
Problem description | Given two strings A and B with lengths of N and M respectively, find the maximum length of the string that is both A subsequence and B subsequence and monotonically increasing in value. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int LCIS(int[] arrn, int[] arrm) { int[][] dp = new int[arrn.length + 1][arrm.length + 1]; int ans = 0; for (int i = 1; i <= arrn.length; ++i) { int val = 0; for (int j = 1; j <= arrm.length; ++j) { if (arrn[i - 1] == arrm[j - 1]) { dp[i][j] = val + 1; ans = Math.max(ans, dp[i][j]); } else { dp[i][j] = dp[i - 1][j]; if (arrn[i - 1] > arrm[j - 1]) val = Math.max(val, dp[i - 1][j]); } } } return ans; }
- Optimized version
public static int LCIS(int[] arrn, int[] arrm) { int[][] dp = new int[2][arrm.length + 1]; int ans = 0; for (int i = 1; i <= arrn.length; ++i) { int val = 0, cur = i % 2, prev = (i - 1) % 2; for (int j = 1; j <= arrm.length; ++j) { if (arrn[i - 1] == arrm[j - 1]) { dp[cur][j] = val + 1; ans = Math.max(ans, dp[cur][j]); } else { dp[cur][j] = dp[prev][j]; if (arrn[i - 1] > arrm[j - 1]) val = Math.max(val, dp[prev][j]); } } } return ans; }
K_LCS | common subsequence with length k
Problem description | Given two strings A and B with length N and M respectively, find the number of strings with length K that are both subsequences of A and B. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int K_LCS(int[] arrn, int[] arrm, int k) { int dp[][][] = new int[arrn.length + 1][arrm.length + 1][k + 1]; int ans = 0; for (int i = 1; i <= arrn.length; ++i) { for (int j = 1; j <= arrm.length; ++j) { for (int h = 1; h <= k; ++h) dp[i][j][h] = dp[i - 1][j][h] + dp[i][j - 1][h] - dp[i - 1][j - 1][h]; if (arrn[i - 1] == arrm[j - 1]) { ++dp[i][j][1]; for (int h = 2; h <= k; ++h) dp[i][j][h] += dp[i - 1][j - 1][h - 1]; } } } return dp[arrn.length][arrm.length][k]; }
- Optimized version
public static int K_LCS(int[] arrn, int[] arrm, int k) { int dp[][][] = new int[2][arrm.length + 1][k + 1]; int ans = 0; for (int i = 1; i <= arrn.length; ++i) { int cur = i % 2, prev = (i - 1) % 2; for (int j = 1; j <= arrm.length; ++j) { for (int h = 1; h <= k; ++h) dp[cur][j][h] = dp[prev][j][h] + dp[cur][j - 1][h] - dp[prev][j - 1][h]; if (arrn[i - 1] == arrm[j - 1]) { ++dp[cur][j][1]; for (int h = 2; h <= k; ++h) dp[cur][j][h] += dp[prev][j - 1][h - 1]; } } } return dp[arrn.length % 2][arrm.length][k]; }
K_LIS | ascending subsequence with length k
Problem description | Given A string A of length N, find the number of subsequences with monotonically increasing values and length K. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int K_LIS(int[] arr, int k) { int[][] dp = new int[arr.length][k + 1]; int ans = 0; for (int i = 0; i < arr.length; ++i) dp[i][1] = 1; for (int i = 1; i < arr.length; ++i) { for (int j = 0; j < i; ++j) { if (arr[i] > arr[j]) for (int h = 2; h <= k; ++h) dp[i][h] += dp[j][h - 1]; } ans += dp[i][k]; } return ans; }
K_LCIS | common ascending subsequence with length k
Problem description | Given two strings A and B with length N and M respectively, find the number of strings that are both subsequence of A and subsequence of B with monotonically increasing value and length K. |
---|---|
Problem solving ideas | No, it needs to be supplemented |
matters needing attention | No, it needs to be supplemented |
Example website | No, it needs to be supplemented |
- Regular Edition
public static int K_LCIS(int[] arrn, int[] arrm, int k) { int[][][] dp = new int[arrn.length + 1][arrm.length + 1][k + 1]; int ans = 0; for (int i = 1; i <= arrn.length; ++i) { int[] val = new int[k + 1]; for (int j = 1; j <= arrm.length; ++j) { if (arrn[i - 1] == arrm[j - 1]) { dp[i][j][1] = 1; for (int h = 2; h <= k; ++h) dp[i][j][h] = val[h - 1]; ans += dp[i][j][k]; } else { for (int h = 0; h <= k; ++h) dp[i][j][h] = dp[i - 1][j][h]; if (arrn[i - 1] > arrm[j - 1]) { for (int h = 0; h <= k; ++h) val[h] += dp[i - 1][j][h]; } } } } return ans; }
- Optimized version
public static int K_LCIS(int[] arrn, int[] arrm, int k) { int[][][] dp = new int[2][arrm.length + 1][k + 1];//The following code optimizes the space int ans = 0; for (int i = 1; i <= arrn.length; ++i) { int[] val = new int[k + 1]; int cur = i % 2, prev = (i - 1) % 2; // It's OK to write (i-1)%2 here for (int j = 1; j <= arrm.length; ++j) { if (arrn[i - 1] == arrm[j - 1]) { dp[cur][j][1] = 1; for (int h = 2; h <= k; ++h) dp[cur][j][h] = val[h - 1]; ans += dp[cur][j][k]; } else { dp[cur][j] = dp[prev][j].clone(); if (arrn[i - 1] > arrm[j - 1]) { for (int h = 0; h <= k; ++h) val[h] += dp[prev][j][h]; } } } } return ans; }