Conda environment construction
Download and install
Download from official website
Tsinghua source image download
New environment
conda create -n rl python=3.8
Activate environment
conda activate rl
Install software
The IDE recommends installing Jupyter Lab or pycham
Execute the following command to install and run jupyter lab in rl environment:
# Activate environment conda activate robocup # install conda install -c conda-forge jupyterlab # function jupyter-lab
Construction of deep learning environment
Windows
View supported CUDA versions
Pay attention to CUDA Version
nvidia-smi # Output: Mon Nov 8 18:37:26 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 496.49 Driver Version: 496.49 CUDA Version: 11.5 | |-------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 Off | N/A | | N/A 0C P8 12W / N/A | 162MiB / 6144MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
Install drive and CUDA
Video card driver download:
Official GeForce driver | NVIDIA
Remember to open and update the graphics card driver after the program is installed
CUDA toolkit Download:
CUDA Toolkit 11.5 Downloads | NVIDIA Developer
If the download speed of the official website is too slow, you can download the driver from Baidu online disk:
Link: https://pan.baidu.com/s/1qy7hJKPAktqoNy8xwFxM3Q
Extraction code: d7z3
Is the installation successful
nvcc -V # Output of successful installation: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Mon_Sep_13_20:11:50_Pacific_Daylight_Time_2021 Cuda compilation tools, release 11.5, V11.5.50 Build cuda_11.5.r11.5/compiler.30411180_0
Ubuntu
Check dependency
Verify your GPU Is there a GPU that can support CUDA
lspci | grep -i nvidia
Verify that your Linux version supports CUDA:
uname -m && cat /etc/*release
Verify whether gcc is installed in the system. Enter in the terminal:
gcc –v
Verify whether kernel header and package development are installed in the system
sudo apt-get install linux-headers-$(uname -r)
Install the drive
Check your NVIDIA graphics card model and recommended driver installation model.
Enter command:
ubuntu-drivers devices
The recommended driver is nvidia-390.
Install driver command:
sudo ubuntu-drivers autoinstall
The command is to automatically install the appropriate graphics card driver. You can also select the required driver for installation. The command is as follows:
sudo apt-get install nvidia-driver-390
Then wait for the installation to complete and restart the system.
sudo reboot
Finally, check whether the installation is successful:
Enter the following command:
nvidia-smi
Install CUDA
CUDA toolkit Download:
CUDA Toolkit 11.5 Downloads | NVIDIA Developer
Check whether the installation is successful:
ls /dev/nvidia*
Set environment variables:
sudo vim ~/.bashrc
Add the following:
export PATH=$PATH:/usr/local/cuda/bin export LD_LIBRARY_PATH=/usr/local/cuda-10.0/bin/lib64:$LD_LIBRARY_PATH
Update profile:
source ~/.bashrc
Install cuDNN
Download the corresponding version of cuda from the official website cudnn
After downloading, unzip it into Cuda's directory and execute the following commands in sequence:
tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
Is the installation successful
Build an example:
cd NVIDIA_CUDA-10.0_Samples/ make cd NVIDIA_CUDA-10.0_Samples/bin/x86_64/linux/release ./deviceQuery
Torch
Install Torch
Torch official website: Start Locally | PyTorch
I installed PyTorch with the following command (combined with the CUDA version installed above):
pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio===0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html # GPU version: conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch # CPU version: conda install pytorch torchvision torchaudio cpuonly -c pytorch
Verify GPU
Open jupyter lab input and run:
import torch torch.cuda.is_available() # If True is output, the CUDA version of Torch is successfully installed
TensorFlow
Install TensorFlow
conda install tensorflow # Installing TensorFlow for cpu using conda conda install tensorflow-gpu # Install TensorFlow of gpu version with conda (CUDA and cudnn will be installed automatically) pip install --ignore-installed --upgrade tensorflow-gpu # Installing using pip pip install --ignore-installed --upgrade tensorflow_gpu==1.8.0 # Specified version
Verify GPU
import tensorflow as tf # Creates a graph. tf.compat.v1.disable_eager_execution() a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c))
Strengthen the construction of learning environment
Installation dependent environment
TensorFlow may need to be installed first
pip install scipy numpy mkl matplotlib opencv-contrib-python pandas ray networkx -i https://pypi.tuna.tsinghua.edu.cn/simple
Install Gym
Execute the third order:
pip install gym # Basic installation pip install gym[all] # Full installation (mujoco needs to be installed first) pip install gym[all] --no-deps mujoco_py # Exclude mujoco_py dependent installation
Is the installation successful
Open jupyter lab input and run:
import gym env = gym.make('CartPole-v0') env.reset() for _ in range(1000): env.render() env.step(env.action_space.sample()) # take a random action env.close()
other
Essential software
sudo apt-get install build-essential cmake git vim
Configure pip source
Execute the following command to upgrade pip to the latest version (> = 10.0.0) and configure it:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pip -U pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
Temporary use:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple # Followed by the package to install
Note that simple cannot be less. It is https instead of http
Update pip:
python -m pip install --upgrade pip
Reference: help for using Tsinghua source pypi image
Configure Ubuntu 18 04 source
Back up the configuration file and execute the following commands:
sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak sudo vim /etc/apt/sources.list
Replacement:
# The source image is annotated by default to improve apt update speed. You can cancel the annotation if necessary deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse # Pre release software source, not recommended # deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
Run the command to update:
sudo apt-get update sudo apt-get upgrade sudo apt-get install -f
Reference: Tsinghua source Ubuntu image help
Configure conda source
# Execute the following command to generate condarc file conda config --set show_channel_urls yes # Edit condarc file vim ~/.condarc
Modified contents of. condarc file:
channels: - defaults show_channel_urls: true default_channels: - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
After modification, run the following command to clear the index cache
conda clean -i # Test it # Create a new environment conda create -n myenv numpy # Activate environment conda activate myenv # Delete environment conda remove -n myenv --all
Reference: Tsinghua source Anaconda image help
Installing Typora for Ubuntu
# or see https://support.typora.com.cn/Typora-on-Linux/ sudo snap install typora
Reference: Typora Chinese station
GitHub image access
Here are the two most commonly used image addresses:
github.com.cnpmjs.org
hub.fastgit.org
In other words, the above image is a cloned version of GitHub. You can visit the above image website. The content of the website is a complete and synchronous image with GitHub, and then download and clone in this website. The use method is simple website replacement, such as https://github.com/openai/gym.git Replace with https://github.com.cnpmjs.org/openai/gym.git .
Ubuntu18.04 install Sogou input method
The following are concise installation commands:
# Update source sudo apt update # Install the fcitx input method framework (some operations need to be done in subsequent settings) sudo apt install fcitx # Set fcitx startup self startup sudo cp /usr/share/applications/fcitx.desktop /etc/xdg/autostart/ # Uninstall the ibus input method framework of the system sudo apt purge ibus # Install Sogou input method sudo dpkg -i Installation package name # Install input method dependency sudo apt install libqt5qml5 libqt5quick5 libqt5quickwidgets5 qml-module-qtquick2 sudo apt install libgsettings-qt1 # Restart the computer (you may need to add Sogou input method before restarting) # super + space switching language # ctrl + space switch input method
Windows Terminal configuration Anaconda
Windows Terminal is built-in in Win 11, and Win10 can be downloaded in the app store
Try running as administrator when permission error occurs
- Name: Anaconda
- Command line: CMD exe /K C:\Users\shang\anaconda3\Scripts\activate. bat
- Startup directory:% USERPROFILE%
- Do not use the parent process directory (otherwise it may enter the Windows directory of drive C by default)
- Icon: C: \ users \ Shang \ anaconda3 \ menu \ Anaconda navigator ico
- Tab Title: Anaconda