solution
Use \ (f[i][j] \) to indicate the probability of \ (j \) after the \ (I \) operation.
Then there are \ (f [i] [J] = \ sum \ limits {s | s | 2 = J} f [I - 1] [s | 1] \ times P [s | 2] \)
So the probability that the number is \ (i \) after the \ (K \) operation is \ (P ^ k \ U i \). The multiplication here is set convolution.
There is still no egg use. We use \ (FWT \) to convert it to a point value.
Then the probability of \ (I \) after the first \ (K \) operation is \ (p_i'^k \). The multiplication here is a simple number multiplication.
Then the expected number of times the array becomes \ (i \) is, the answer is \ (\ sum \ limits {t = 1} ^ {\ infty} t (P \ i ^ k-p \ U i ^ {k-1}) = - (1 + P \ U i ^ 2 + P \ u i ^ 3 + \ cdots) = \ frac {1} {X-1} \)
Then use \ (IFWT \) to convert back.
code
/* * @Author: wxyww * @Date: 2020-04-26 08:51:04 * @Last Modified time: 2020-04-26 09:10:07 */ #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<algorithm> #include<queue> #include<vector> #include<ctime> using namespace std; typedef long long ll; const int N = 1 << 21; ll read() { ll x = 0,f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); } return x * f; } double a[N]; int main() { int n = read(); for(int i = 0;i < (1 << n);++i) scanf("%lf",&a[i]); for(int i = 0;i < n;++i) for(int j = 0;j < (1 << n);++j) if(!((j >> i) & 1)) a[j | (1 << i)] += a[j]; for(int i = 0;i < (1 << n);++i) { if(a[i] - 1 >= -1e-8) { if(i == (1 << n) - 1) a[i] = 0; else {puts("INF");return 0;} } else a[i] = 1 / (a[i] - 1); } for(int i = 0;i < n;++i) for(int j = 0;j < (1 << n);++j) if(!((j >> i) & 1)) a[j | (1 << i)] -= a[j]; printf("%.10lf\n",a[(1 << n) - 1]); return 0; } /* 2 0.25 0.25 0.25 0.25 */