Continuous delivery of MLOps using model unit testing

Posted by MeanMrMustard on Fri, 31 Dec 2021 17:54:04 +0100

catalogue

data_utils.py

email_notifications.py

task.py

Dockerfile

next step

In this series of articles, we will guide you through CI/CD be applied to AI The process of the task. You will eventually get a satisfaction Google MLOps maturity model Functional piping required by level 2. We assume that you are right Python,Deep learning,Docker,DevOps and Flask Have a certain understanding.

In this series Previous articles In, we explained how to continuously integrate model changes and continuously train our model when new data is collected. In this article, we will test the trained model in an environment that simulates a production environment. We will load the model saved in the test registry, expose it through the cloning of the model API, and run tests against it. You are welcome to add your own tests at this stage. The following figure shows our position during the project.

The code file structure is as follows:

 From its repository Get the original code.

data_utils.py

This data_ utils. The function contained in the PY file is to check whether there is a model in the test model registry. If so, load the model:

import datetime
from google.cloud import storage
import pandas as pd
import numpy as np
import os
import cv2
import sys
 
def previous_model(bucket_name,model_filename):
 try:
  storage_client = storage.Client() #if running on GCP
  bucket = storage_client.bucket(bucket_name)
  status = storage.Blob(bucket=bucket, name='{}/{}'.format('testing',model_filename)).exists(storage_client)
  return status,None
 except Exception as e:
  print('Something went wrong when trying to check if previous model exists GCS bucket. Exception: '+e,flush=True)
  return None,e
 
def load_model(bucket_name,model_filename):
 try:
  storage_client = storage.Client() #if running on GCP
  bucket = storage_client.bucket(bucket_name)
  blob1 = bucket.blob('{}/{}'.format('testing',model_filename))
  blob1.download_to_filename('/root/'+str(model_filename))
  return True,None
 except Exception as e:
  print('Something went wrong when trying to load previous model from GCS bucket. Exception: '+e,flush=True)
  return False,e

email_notifications.py

This email_notifications.py file handle to notify the product owner of successful or problematic code execution:

import smtplib
import os
 
# Email variables definition
sender = 'example@gmail.com'
receiver = ['svirahonda@gmail.com'] #replace this by the owner's email address
smtp_provider = 'smtp.gmail.com' #replace this by your STMP provider
smtp_port = 587
smtp_account = 'example@gmail.com'
smtp_password = 'your_password'
 
def send_update(message):
 message = 'Subject: {}\n\n{}'.format('An automatic unit testing has ended recently.', message)
 try:
  server = smtplib.SMTP(smtp_provider,smtp_port)
  server.starttls()
  server.login(smtp_account,smtp_password)
  server.sendmail(sender, receiver, message)         
  return
 except Exception as e:
  print('Something went wrong. Unable to send email.',flush=True)
  print('Exception: ',e)
  return
 
def exception(e_message):
 try:
  message = 'Subject: {}\n\n{}'.format('Something went wrong with the testing API.', e_message)
  server = smtplib.SMTP(smtp_provider,smtp_port)
  server.starttls()
  server.login(smtp_account,smtp_password)
  server.sendmail(sender, receiver, message)         
  return
 except Exception as e:
  print('Something went wrong. Unable to send email.',flush=True)
  print('Exception: ',e)
  return

task.py

This task Py file processing container execution. It coordinates the initialization and termination of the flash application, model loading, model testing, and email notification:

import tensorflow as tf
from tensorflow.keras.models import load_model
import jsonpickle
import data_utils, email_notifications
import sys
import os
from google.cloud import storage
import datetime
import numpy as np
import jsonpickle
import cv2
from flask import flash,Flask,Response,request,jsonify
import threading
import requests
import time
 
# IMPORTANT
# If you're running this container locally and you want to access the API via local browser, use http://172.17.0.2:5000/
 
# Starting flask app
app = Flask(__name__)
 
# general variables declaration
model_name = 'best_model.hdf5'
bucket_name = 'automatictrainingcicd-aiplatform'
class_names = ['Normal','Viral Pneumonia','COVID-19']
headers = {'content-type': 'image/png'}
api = 'http://127.0.0.1:5000/' # self app
global model
 
@app.before_first_request
def before_first_request():
 def initialize_job():
  if len(tf.config.experimental.list_physical_devices('GPU')) > 0:
   tf.config.set_soft_device_placement(True)
   tf.debugging.set_log_device_placement(True)
  global model
  # Checking if there's any model saved at testing on GCS
  model_gcs = data_utils.previous_model(bucket_name,model_name)
  # If any model exists at testing, load it, test it on data and use it on the API
  if model_gcs[0] == True:
   model_gcs = data_utils.load_model(bucket_name,model_name)
    if model_gcs[0] == True:
     try:
      model = load_model(model_name)
     except Exception as e:
      email_notifications.exception('Something went wrong trying to test old /testing model. Exception: '+str(e))
      sys.exit(1)
    else:
     email_notifications.exception('Something went wrong when trying to load old /testing model. Exception: '+str(model_gcs[1]))
     sys.exit(1)
   if model_gcs[0] == False:
    email_notifications.send_update('There are no artifacts at model registry. Check GCP for more information.')
    sys.exit(1)
   if model_gcs[0] == None:
    email_notifications.exception('Something went wrong when trying to check if old testing model exists. Exception: '+model_gcs[1]+'. Aborting automatic testing.')
    sys.exit(1)
   api_test()
  thread = threading.Thread(target=initialize_job)
  thread.start()

@app.route('/init', methods=['GET','POST'])
def init():
 message = {'message': 'API initialized.'}
 response = jsonpickle.encode(message)
 return Response(response=response, status=200, mimetype="application/json")
 
@app.route('/', methods=['POST'])
def index():
 if request.method=='POST':
  try:
   #Converting string that contains image to uint8
   image = np.fromstring(request.data,np.uint8)
   image = image.reshape((128,128,3))
   image = [image]
   image = np.array(image)
   image = image.astype(np.float16)
   result = model.predict(image)
   result = np.argmax(result)
   message = {'message': '{}'.format(str(result))}
   json_response = jsonify(message)
   return json_response
 
  except Exception as e:
   message = {'message': 'Error: '+str(e)}
   json_response = jsonify(message)
   email_notifications.exception('Something went wrong when trying to make prediction via testing API. Exception: '+str(e)+'. Aborting automatic testing.')
   return json_response
 else:
  message = {'message': 'Error. Please use this API in a proper manner.'}
  json_response = jsonify(message)
  return json_response
 
def self_initialize():
 def initialization():
  global started
  started = False
  while started == False:
   try:
    server_response = requests.get('http://127.0.0.1:5000/init')
    if server_response.status_code == 200:
     started = True
   except:
    pass
   time.sleep(3)
 thread = threading.Thread(target=initialization)
 thread.start()
 
def api_test():
 try:
  image = cv2.imread('TEST_IMAGE.jpg')
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  image = cv2.resize(image, (128, 128))
  result = requests.post(api, data=image.tostring(),headers=headers)
  result = result.json()
  prediction = int(result['message'])
  if prediction == 1:
   email_notifications.send_update('Testing stage has ended successfully. Shutting down container. Check the GCP logs for more information.')
   sys.exit(0)
  else:
   email_notifications.send_update('Testing stage has crashed. Check the GCP logs for more information.')
   sys.exit(1)
 except Exception as e:
  email_notifications.exception('Testing stage crashed with an exception: '+str(e)+'. Check the GCP logs for more information.')
  sys.exit(1)
 
 
if __name__ == '__main__':
 self_initialize()
 app.run(host='0.0.0.0',debug=True,threaded=True)

Dockerfile

Our Dockerfile provides rules for building containers:

FROM gcr.io/deeplearning-platform-release/tf2-cpu.2-0
WORKDIR /root
 
RUN pip install pandas numpy google-cloud-storage scikit-learn opencv-python Flask jsonpickle
 
RUN apt-get update; apt-get install git -y; apt-get install -y libgl1-mesa-dev
 
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
RUN git clone https://github.com/sergiovirahonda/AutomaticTraining-UnitTesting.git
 
RUN mv /root/AutomaticTraining-UnitTesting/data_utils.py /root
RUN mv /root/AutomaticTraining-UnitTesting/task.py /root
RUN mv /root/AutomaticTraining-UnitTesting/email_notifications.py /root
RUN mv /root/AutomaticTraining-UnitTesting/TEST_IMAGE.jpg /root
 
EXPOSE 5000
 
ENTRYPOINT ["python","task.py"]

After you build and run the container locally, you will get a functional model unit tester. It allows you to verify that the model to be deployed to production outputs the expected results without errors or failures.

Feel free to include additional tests in this job. Typically, such testing depends on the business case.

next step

stay Next article In, we will build an API that will load our model from the production registry to enable In Google MLOps maturity model Describes the forecast service. Please pay attention!

https://www.codeproject.com/Articles/5301649/MLOps-Continuous-Delivery-with-Model-Unit-Testing

Topics: Python AI