I have a dictionary: the key is a string and the value is an integer.
Example:
stats = {'a':1000, 'b':3000, 'c': 100}
I would like to use'b'as the answer because it is a key of greater value.
I use an intermediate list with a tuple of reverse key values to do the following:
inverse = [(value, key) for key, value in stats.items()] print max(inverse)[1]
Is that a better (or more elegant) way?
#1st floor
I've tested many variants, and this is the fastest way to return a dictionary key with the maximum value:
def keywithmaxval(d): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v=list(d.values()) k=list(d.keys()) return k[v.index(max(v))]
To give you an idea, here are some candidates:
def f1(): v=list(d1.values()) k=list(d1.keys()) return k[v.index(max(v))] def f2(): d3={v:k for k,v in d1.items()} return d3[max(d3)] def f3(): return list(filter(lambda t: t[1]==max(d1.values()), d1.items()))[0][0] def f3b(): # same as f3 but remove the call to max from the lambda m=max(d1.values()) return list(filter(lambda t: t[1]==m, d1.items()))[0][0] def f4(): return [k for k,v in d1.items() if v==max(d1.values())][0] def f4b(): # same as f4 but remove the max from the comprehension m=max(d1.values()) return [k for k,v in d1.items() if v==m][0] def f5(): return max(d1.items(), key=operator.itemgetter(1))[0] def f6(): return max(d1,key=d1.get) def f7(): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v=list(d1.values()) return list(d1.keys())[v.index(max(v))] def f8(): return max(d1, key=lambda k: d1[k]) tl=[f1,f2, f3b, f4b, f5, f6, f7, f8, f4,f3] cmpthese.cmpthese(tl,c=100)
Test Dictionary:
d1={1: 1, 2: 2, 3: 8, 4: 3, 5: 6, 6: 9, 7: 17, 8: 4, 9: 20, 10: 7, 11: 15, 12: 10, 13: 10, 14: 18, 15: 18, 16: 5, 17: 13, 18: 21, 19: 21, 20: 8, 21: 8, 22: 16, 23: 16, 24: 11, 25: 24, 26: 11, 27: 112, 28: 19, 29: 19, 30: 19, 3077: 36, 32: 6, 33: 27, 34: 14, 35: 14, 36: 22, 4102: 39, 38: 22, 39: 35, 40: 9, 41: 110, 42: 9, 43: 30, 44: 17, 45: 17, 46: 17, 47: 105, 48: 12, 49: 25, 50: 25, 51: 25, 52: 12, 53: 12, 54: 113, 1079: 50, 56: 20, 57: 33, 58: 20, 59: 33, 60: 20, 61: 20, 62: 108, 63: 108, 64: 7, 65: 28, 66: 28, 67: 28, 68: 15, 69: 15, 70: 15, 71: 103, 72: 23, 73: 116, 74: 23, 75: 15, 76: 23, 77: 23, 78: 36, 79: 36, 80: 10, 81: 23, 82: 111, 83: 111, 84: 10, 85: 10, 86: 31, 87: 31, 88: 18, 89: 31, 90: 18, 91: 93, 92: 18, 93: 18, 94: 106, 95: 106, 96: 13, 9232: 35, 98: 26, 99: 26, 100: 26, 101: 26, 103: 88, 104: 13, 106: 13, 107: 101, 1132: 63, 2158: 51, 112: 21, 113: 13, 116: 21, 118: 34, 119: 34, 7288: 45, 121: 96, 122: 21, 124: 109, 125: 109, 128: 8, 1154: 32, 131: 29, 134: 29, 136: 16, 137: 91, 140: 16, 142: 104, 143: 104, 146: 117, 148: 24, 149: 24, 152: 24, 154: 24, 155: 86, 160: 11, 161: 99, 1186: 76, 3238: 49, 167: 68, 170: 11, 172: 32, 175: 81, 178: 32, 179: 32, 182: 94, 184: 19, 31: 107, 188: 107, 190: 107, 196: 27, 197: 27, 202: 27, 206: 89, 208: 14, 214: 102, 215: 102, 220: 115, 37: 22, 224: 22, 226: 14, 232: 22, 233: 84, 238: 35, 242: 97, 244: 22, 250: 110, 251: 66, 1276: 58, 256: 9, 2308: 33, 262: 30, 263: 79, 268: 30, 269: 30, 274: 92, 1300: 27, 280: 17, 283: 61, 286: 105, 292: 118, 296: 25, 298: 25, 304: 25, 310: 87, 1336: 71, 319: 56, 322: 100, 323: 100, 325: 25, 55: 113, 334: 69, 340: 12, 1367: 40, 350: 82, 358: 33, 364: 95, 376: 108, 377: 64, 2429: 46, 394: 28, 395: 77, 404: 28, 412: 90, 1438: 53, 425: 59, 430: 103, 1456: 97, 433: 28, 445: 72, 448: 23, 466: 85, 479: 54, 484: 98, 485: 98, 488: 23, 6154: 37, 502: 67, 4616: 34, 526: 80, 538: 31, 566: 62, 3644: 44, 577: 31, 97: 119, 592: 26, 593: 75, 1619: 48, 638: 57, 646: 101, 650: 26, 110: 114, 668: 70, 2734: 41, 700: 83, 1732: 30, 719: 52, 728: 96, 754: 65, 1780: 74, 4858: 47, 130: 29, 790: 78, 1822: 43, 2051: 38, 808: 29, 850: 60, 866: 29, 890: 73, 911: 42, 958: 55, 970: 99, 976: 24, 166: 112}
And test results in Python 3.2:
rate/sec f4 f3 f3b f8 f5 f2 f4b f6 f7 f1 f4 454 -- -2.5% -96.9% -97.5% -98.6% -98.6% -98.7% -98.7% -98.9% -99.0% f3 466 2.6% -- -96.8% -97.4% -98.6% -98.6% -98.6% -98.7% -98.9% -99.0% f3b 14,715 3138.9% 3057.4% -- -18.6% -55.5% -56.0% -56.4% -58.3% -63.8% -68.4% f8 18,070 3877.3% 3777.3% 22.8% -- -45.4% -45.9% -46.5% -48.8% -55.5% -61.2% f5 33,091 7183.7% 7000.5% 124.9% 83.1% -- -1.0% -2.0% -6.3% -18.6% -29.0% f2 33,423 7256.8% 7071.8% 127.1% 85.0% 1.0% -- -1.0% -5.3% -17.7% -28.3% f4b 33,762 7331.4% 7144.6% 129.4% 86.8% 2.0% 1.0% -- -4.4% -16.9% -27.5% f6 35,300 7669.8% 7474.4% 139.9% 95.4% 6.7% 5.6% 4.6% -- -13.1% -24.2% f7 40,631 8843.2% 8618.3% 176.1% 124.9% 22.8% 21.6% 20.3% 15.1% -- -12.8% f1 46,598 10156.7% 9898.8% 216.7% 157.9% 40.8% 39.4% 38.0% 32.0% 14.7% --
Under Python 2.7:
rate/sec f3 f4 f8 f3b f6 f5 f2 f4b f7 f1 f3 384 -- -2.6% -97.1% -97.2% -97.9% -97.9% -98.0% -98.2% -98.5% -99.2% f4 394 2.6% -- -97.0% -97.2% -97.8% -97.9% -98.0% -98.1% -98.5% -99.1% f8 13,079 3303.3% 3216.1% -- -5.6% -28.6% -29.9% -32.8% -38.3% -49.7% -71.2% f3b 13,852 3504.5% 3412.1% 5.9% -- -24.4% -25.8% -28.9% -34.6% -46.7% -69.5% f6 18,325 4668.4% 4546.2% 40.1% 32.3% -- -1.8% -5.9% -13.5% -29.5% -59.6% f5 18,664 4756.5% 4632.0% 42.7% 34.7% 1.8% -- -4.1% -11.9% -28.2% -58.8% f2 19,470 4966.4% 4836.5% 48.9% 40.6% 6.2% 4.3% -- -8.1% -25.1% -57.1% f4b 21,187 5413.0% 5271.7% 62.0% 52.9% 15.6% 13.5% 8.8% -- -18.5% -53.3% f7 26,002 6665.8% 6492.4% 98.8% 87.7% 41.9% 39.3% 33.5% 22.7% -- -42.7% f1 45,354 11701.5% 11399.0% 246.8% 227.4% 147.5% 143.0% 132.9% 114.1% 74.4% --
You can see that f1 is the fastest under Python 3.2 and 2.7 (or more completely, keywithmaxval at the top of this article)
#2nd floor
Counter = 0 for word in stats.keys(): if stats[word]> counter: Counter = stats [word] print Counter
#3rd floor
Given the number of entries, I have the maximum value.I'll list the keys with the largest values.
>>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000} >>> [key for m in [max(stats.values())] for key,val in stats.iteritems() if val == m] ['b', 'd']
This will also give you "b" and any other maximum keys.
Note: For python 3, use stats.items() instead of stats.iteritems()
#4th floor
You can do this using operator.itemgetter:
import operator stats = {'a':1000, 'b':3000, 'c': 100} max(stats.iteritems(), key=operator.itemgetter(1))[0]
Instead of building a new list in memory, use stats.iteritems().The key parameter of the max() function is a function that calculates the key used to determine how items are ranked.
Note that if another key-value pair "d":3000 is to be used, the method will return only one of the two values, even if they both have the maximum value.
>>> import operator >>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000} >>> max(stats.iteritems(), key=operator.itemgetter(1))[0] 'b'
If you use Python3:
>>> max(stats.items(), key=operator.itemgetter(1))[0] 'b'
#5th floor
This is another:
stats = {'a':1000, 'b':3000, 'c': 100} max(stats.iterkeys(), key=lambda k: stats[k])
The function key only returns the value used for sorting, while max() returns the desired element.