Title Link: Recursive sequence
Wh a t's the num b er of the nth cow
Main idea:
Fi=Fi-1+2Fi-2+i4. Given F1 and F2, find Fn.
Topic idea:
[recurrence + matrix fast power]
The formula has been used for more than one hour.
It's mainly me. Too few tweets.
It is easy to write recursive matrix by first considering f(i)=f(i-1)+2f(i-2)
0 2
1 1
(i+1)4=i4+4i3+6i2+4i+1.
So we need to store the power of i to the power of 432110 in the recursive matrix, so that we can deduce (i+1)4. The matrix is
1 0 0 0 0
4 1 0 0 0
6 3 1 0 0
4 3 2 1 0
1 1 1 1 1
Then f = {f I-1, fi, I4, I3, I2, I1, I0}. By combining the above two matrices, we can deduce {fi,fi+1,(i+1)4,(i+1)3,(i+1)2,(i+1)1,(i+1)0}
0 2 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 4 4 1 0 0 0
0 6 6 3 1 0 0
0 4 4 3 2 1 0
0 1 1 1 1 1 1
After deriving the transfer matrix, we only need to find the fast power of the matrix according to n.
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const long long mod = 2147493647; struct prog { long long a[8][8]; }; prog s,B; prog matrixmul(prog a,prog b) { prog c; for(int i=1;i<8;++i)for(int j=1;j<8;++j) { c.a[i][j]=0; for(int k=1;k<8;k++) c.a[i][j]+=(a.a[i][k]*b.a[k][j])%mod; c.a[i][j]%=mod; } return c; } prog mul(prog s,int k) { prog ans; for(int i=1;i<8;++i)for(int j=1;j<8;++j) ans.a[i][j]=(i==j)?1:0; while(k){ if(k&1) ans=matrixmul(ans,s); k>>=1; s=matrixmul(s,s); } return ans; } int main() { int n,t,a,b; for(scanf("%d",&t);t--;){ scanf("%d %d %d",&n,&a,&b); if(n==1){printf("%lld\n",a%mod);continue;} if(n==2){printf("%lld\n",b%mod);continue;} if(n==3){printf("%lld\n",(81+2*a%mod+b%mod)%mod);continue;} n-=2; for(int i=1;i<=7;++i)for(int j=1;j<=7;++j) s.a[i][j]=0,B.a[i][j]=0; for(int i=1; i<=5; i++)s.a[i][1]=1; for(int i=2; i<=5; i++)s.a[i][2]=i-1; s.a[3][3]=1;s.a[4][3]=3;s.a[5][3]=6; s.a[4][4]=1;s.a[5][4]=4; s.a[5][5]=1;s.a[6][5]=1; s.a[6][6]=1;s.a[7][6]=1; s.a[6][7]=2; B.a[1][1]=1;B.a[2][1]=3;B.a[3][1]=9;B.a[4][1]=27;B.a[5][1]=81;B.a[6][1]=b;B.a[7][1]=a; s=mul(s,n); s=matrixmul(s,B); printf("%lld\n",s.a[6][1]%mod); } return 0; }