Java 1.8 new feature Stream

Posted by madwormer2 on Tue, 18 Jan 2022 07:11:36 +0100

What is stream? Stream regards the set of elements to be processed as a stream. In the process of streaming, the Stream API is used to operate the elements in the stream, such as filtering, sorting, aggregation, etc.

Stream s can be created from arrays or collections. There are two kinds of operations for convection:

  1. Intermediate operations return a new stream each time, and there can be multiple.
  2. Terminal operation. Each stream can only perform terminal operation once. After the terminal operation, the stream cannot be used again. A terminal operation generates a new set or value.

In addition, Stream has several features:

  1. stream does not store data, but calculates the data according to specific rules, and generally outputs the results.
  2. stream does not change the data source and usually produces a new set or a value.
  3. stream has the characteristic of delayed execution, and the intermediate operation will be executed only when the terminal operation is called.

A Stream can be created from a collection array.

1. Through Java util. Collection. The stream () method creates a stream from a collection

List<String> list = Arrays.asList("a", "b", "c");
// Create a sequential flow
Stream<String> stream = list.stream();
// Create a parallel stream
Stream<String> parallelStream = list.parallelStream();

2. Using Java util. Arrays. The stream (t [] array) method creates a stream with an array

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3. Static methods using Stream: of(), iterate(), generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);

Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

Output results:

0 3 6 9 0.4626673076243447 0.9061170024636954 0.4901337233769709

Simple distinction between stream and parallel stream: stream is a sequential stream, and the main thread performs operations in sequence, while parallel stream is a parallel stream, which internally performs operations in the form of multi-threaded parallel execution, but the premise is that there is no sequence requirement for data processing in the stream.

If the amount of data in the stream is large enough, the parallel stream can speed up. In addition to directly creating parallel streams, you can also convert sequential streams into parallel streams through parallel():

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

Before using stream, first understand a concept: Optional.

The Optional class is a null able container object. If the value exists, the isPresent() method will return true, and calling the get() method will return the object.

This is the Employee class used in the following cases:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));

class Person {
  private String name; // full name
  private int salary; // salary
  private int age; // Age
  private String sex; //Gender
  private String area; // region

  // Construction method
  public Person(String name, int salary, int age,String sex,String area) {
    this.name = name;
    this.salary = salary;
    this.age = age;
    this.sex = sex;
    this.area = area;
  }
  // get and set are omitted. Please add them yourself

}

2.1 foreach/find/match

Stream also supports traversal and matching elements of similar collections, but the elements in stream exist as Optional types. The traversal and matching of stream is very simple.

// import has been omitted, please add it yourself, and the following code is also

public class StreamTest {
  public static void main(String[] args) {
        List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // Traverse the elements whose output meets the criteria
        list.stream().filter(x -> x > 6).forEach(System.out::println);
        // Match first
        Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
        // Match any (for parallel streams)
        Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
        // Whether to include elements that meet specific conditions
        boolean anyMatch = list.stream().anyMatch(x -> x < 6);
        System.out.println("Match first value:" + findFirst.get());
        System.out.println("Match any value:" + findAny.get());
        System.out.println("Is there a value greater than 6:" + anyMatch);
    }
}

2.2 filter

Filtering is the operation of verifying the elements in the flow according to certain rules and extracting the qualified elements into the new flow.

Case 1: filter out the elements greater than 7 in the Integer set and print them

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
    Stream<Integer> stream = list.stream();
    stream.filter(x -> x > 7).forEach(System.out::println);
  }
}

Expected results:

8 9

Case 2: select employees with wages higher than 8000 and form a new collection. Forming a new collection depends on collection, which will be described in detail later.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
        .collect(Collectors.toList());
    System.out.print("Name of employees above 8000:" + fiterList);
  }
}

Operation results:

Name of employees above 8000: [Tom, Anni, Owen]

2.3 polymerization (max/min/count)

You must be familiar with the words max, min and count. Yes, we often use them for data statistics in mysql. These concepts and usages are also introduced into Java stream, which greatly facilitates our data statistics of sets and arrays.

Case 1: get the longest element in the String set.

public class StreamTest {
  public static void main(String[] args) {
    List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

    Optional<String> max = list.stream().max(Comparator.comparing(String::length));
    System.out.println("Longest string:" + max.get());
  }
}

Output results:

Longest string: weoujgsd

Case 2: get the maximum value in the Integer set.

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

    // Natural sorting
    Optional<Integer> max = list.stream().max(Integer::compareTo);
    // Custom sorting
    Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
      @Override
      public int compare(Integer o1, Integer o2) {
        return o1.compareTo(o2);
      }
    });
    System.out.println("Maximum natural sort:" + max.get());
    System.out.println("Maximum value of custom sort:" + max2.get());
  }
}

Output results:

Maximum value of natural sort: 11 maximum value of custom sort: 11

Case 3: the person who gets the highest salary.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
    System.out.println("Maximum employee salary:" + max.get().getSalary());
  }
}

Output results:

Maximum employee salary: 9500

Case 4: calculate the number of elements greater than 6 in the Integer set.

import java.util.Arrays;
import java.util.List;

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

    long count = list.stream().filter(x -> x > 6).count();
    System.out.println("list Number of elements greater than 6 in:" + count);
  }
}

Output results:

Number of elements greater than 6 in the list: 4

2.4 mapping (map/flatMap)

Mapping, the elements of one flow can be mapped to another flow according to certain mapping rules. It is divided into map and flatMap:

  • map: takes a function as an argument, which is applied to each element and mapped to a new element.
  • flatMap: take a function as a parameter, replace each value in the stream with another stream, and then connect all streams into one stream.

Case 1: all elements of the English string array are changed to uppercase. Integer array + 3 per element.

public class StreamTest {
  public static void main(String[] args) {
    String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
    List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

    List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
    List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

    System.out.println("Capitalize each element:" + strList);
    System.out.println("Each element+3: " + intListNew);
  }
}

Output results:

Capitalize each element: [ABCD, BCDD, DEFDE, FTR] each element + 3: [4, 6, 8, 10, 12, 14]

Case 2: increase the salary of all employees by 1000.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // Do not change the way the original employees are assembled
    List<Person> personListNew = personList.stream().map(person -> {
      Person personNew = new Person(person.getName(), 0, 0, null, null);
      personNew.setSalary(person.getSalary() + 10000);
      return personNew;
    }).collect(Collectors.toList());
    System.out.println("Before one change:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
    System.out.println("After one change:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

    // Change the way employees gather
    List<Person> personListNew2 = personList.stream().map(person -> {
      person.setSalary(person.getSalary() + 10000);
      return person;
    }).collect(Collectors.toList());
    System.out.println("Before the second change:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    System.out.println("After the second change:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
  }
}

Output results:

Before the first change: Tom – > 8900 after the first change: Tom – > 18900 before the second change: Tom – > 18900 after the second change: Tom – > 18900

Case 3: combine two character arrays into a new character array.

public class StreamTest {
  public static void main(String[] args) {
    List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
    List<String> listNew = list.stream().flatMap(s -> {
      // Convert each element into a stream
      String[] split = s.split(",");
      Stream<String> s2 = Arrays.stream(split);
      return s2;
    }).collect(Collectors.toList());

    System.out.println("Collection before processing:" + list);
    System.out.println("Processed collection:" + listNew);
  }
}

Output results:

Set before processing: [m-k-l-a, 1-3-5] set after processing: [m, k, l, a, 1, 3, 5]

2.5 reduce

Reduction, also known as reduction, as the name suggests, is to reduce a stream to a value, which can realize the operations of summation, product and maximum of a set.

Case 1: find the sum, product and maximum of the elements of the Integer set.

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
    // Summation method 1
    Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
    // Summation method 2
    Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
    // Summation method 3
    Integer sum3 = list.stream().reduce(0, Integer::sum);

    // Product
    Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

    // Maximum method 1
    Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
    // Find the maximum 2
    Integer max2 = list.stream().reduce(1, Integer::max);

    System.out.println("list Summation:" + sum.get() + "," + sum2.get() + "," + sum3);
    System.out.println("list Quadrature:" + product.get());
    System.out.println("list Summation:" + max.get() + "," + max2);
  }
}

Output results:

List summation: 29,29,29 list quadrature: 2112 list summation: 11,11

Case 2: seek the sum of the wages of all employees and the maximum wage.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // Sum of wages method 1:
    Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    // Sum of wages method 2:
    Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
        (sum1, sum2) -> sum1 + sum2);
    // Sum of wages method 3:
    Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

    // Maximum wage method 1:
    Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        Integer::max);
    // Maximum wage method 2:
    Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        (max1, max2) -> max1 > max2 ? max1 : max2);

    System.out.println("Sum of wages:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
    System.out.println("Maximum wage:" + maxSalary + "," + maxSalary2);
  }
}

Output results:

Sum of wages: 493004930049300 maximum wage: 95009500

2.6 collect

Collection, collection, can be said to be the most diverse and functional part. Literally, it means collecting a stream, which can eventually be collected into a value or a new collection.

collect mainly relies on Java util. stream. Static methods built into the collectors class.

2.6.1 collection (toList/toSet/toMap)

Because the stream does not store data, after the data in the stream is processed, the data in the stream needs to be re collected into a new set. toList, toSet and toMap are commonly used. In addition, there are more complex usages such as toCollection and tocurrentmap. The following example demonstrates toList, toSet and toMap:

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
    List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
    Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));

    Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
        .collect(Collectors.toMap(Person::getName, p -> p));
    System.out.println("toList:" + listNew);
    System.out.println("toSet:" + set);
    System.out.println("toMap:" + map);
  }
}

Operation results:

toList: [6, 4, 6, 6, 20] toSet: [4, 20, 6] toMap: {Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

2.6.2 Statistics (count/averaging)

Collectors provide a series of static methods for data statistics:

  • Count: count
  • Average value: averagingInt, averagingLong, averagingDouble
  • Max value: maxBy, minBy
  • Summation: summerint, summerlong, summerdouble
  • Statistics of all the above: summarizingInt, summarizingLong, summarizingDouble

Case: count the number of employees, average salary, total salary and maximum salary.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // Total
    Long count = personList.stream().collect(Collectors.counting());
    // Average wage
    Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
    // Seek maximum wage
    Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
    // Sum of wages
    Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
    // One time statistics of all information
    DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

    System.out.println("Total number of employees:" + count);
    System.out.println("Average salary of employees:" + average);
    System.out.println("Total employee salary:" + sum);
    System.out.println("Employee salary statistics:" + collect);
  }
}

Operation results:

Total number of employees: 3 average wages of employees: 7900.0 total wages of employees: 23700 wages of employees all statistics: DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

2.6.3 grouping (partitioningBy/groupingBy)

  • Partition: divide the stream into two maps according to conditions. For example, employees are divided into two parts according to whether their salary is higher than 8000.
  • Grouping: divide the set into multiple maps, such as grouping employees by gender. There are single level grouping and multi-level grouping.

Case: divide employees into two parts according to whether their salary is higher than 8000; Group employees by gender and region

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, "male", "New York"));
    personList.add(new Person("Jack", 7000, "male", "Washington"));
    personList.add(new Person("Lily", 7800, "female", "Washington"));
    personList.add(new Person("Anni", 8200, "female", "New York"));
    personList.add(new Person("Owen", 9500, "male", "New York"));
    personList.add(new Person("Alisa", 7900, "female", "New York"));

    // Group employees by salary above 8000
        Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // Group employees by gender
        Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
        // Employees are grouped first by gender and then by region
        Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
        System.out.println("Grouping of employees by salary greater than 8000:" + part);
        System.out.println("Employees are grouped by gender:" + group);
        System.out.println("Employees by gender and region:" + group2);
  }
}

Output results:

Grouping of employees by salary greater than 8000:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
Employees are grouped by gender:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
Employees by gender and region:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

2.6.4 joining

joining can connect the elements in the stream into a string with a specific connector (or directly if not).

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
    System.out.println("Names of all employees:" + names);
    List<String> list = Arrays.asList("A", "B", "C");
    String string = list.stream().collect(Collectors.joining("-"));
    System.out.println("Spliced string:" + string);
  }
}

Operation results:

Names of all employees: Tom,Jack,Lily, spliced string: A-B-C

2.6.5 reducing

Compared with the reduce method of stream itself, the reducing method provided by the Collectors class adds support for custom reduction.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // The sum of the salary of each employee after deducting the threshold (this example is not rigorous, but I didn't expect a good example at the moment)
    Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
    System.out.println("Total tax deduction salary of employees:" + sum);

    // reduce of stream
    Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    System.out.println("Total employee salary:" + sum2.get());
  }
}

Operation results:

Total employee tax deduction salary: 8700 total employee salary: 23700

2.7 sorted

sorted, intermediate operation. There are two sorts:

  • sorted(): sort naturally. Elements in the stream need to implement the Comparable interface
  • sorted(Comparator com): Comparator sorter custom sorting

Case: sort employees by salary from high to low (if the salary is the same, then by age)

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();

    personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
    personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
    personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 8800, 26, "male", "New York"));
    personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

    // Sort by salary ascending (natural sort)
    List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
        .collect(Collectors.toList());
    // Sort by salary in reverse order
    List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
        .map(Person::getName).collect(Collectors.toList());
    // Sort by salary and then by age
    List<String> newList3 = personList.stream()
        .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
        .collect(Collectors.toList());
    // Sort by salary first and then by age (descending order)
    List<String> newList4 = personList.stream().sorted((p1, p2) -> {
      if (p1.getSalary() == p2.getSalary()) {
        return p2.getAge() - p1.getAge();
      } else {
        return p2.getSalary() - p1.getSalary();
      }
    }).map(Person::getName).collect(Collectors.toList());

    System.out.println("Sort by salary in ascending order:" + newList);
    System.out.println("Sort by salary in descending order:" + newList2);
    System.out.println("Sort by salary first and then by age in ascending order:" + newList3);
    System.out.println("Sort by salary first and then by age in descending order:" + newList4);
  }
}

Operation results:

Sort by salary ascending: [Lily, Tom, Sherry, Jack, Alisa] sort by salary descending: [Sherry, Jack, Alisa, Tom, Lily] sort by salary first and then by age ascending: [Lily, Tom, Sherry, Jack, Alisa] sort by salary first and then by age descending: [Alisa, Jack, Sherry, Tom, Lily]

2.8 extraction / combination

Streams can also be merged, de duplicated, restricted, and skipped.

public class StreamTest {
  public static void main(String[] args) {
    String[] arr1 = { "a", "b", "c", "d" };
    String[] arr2 = { "d", "e", "f", "g" };

    Stream<String> stream1 = Stream.of(arr1);
    Stream<String> stream2 = Stream.of(arr2);
    // concat: merge two streams distinct: de duplication
    List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
    // Limit: limit the first n data obtained from the stream
    List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
    // Skip: skip the first n data
    List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

    System.out.println("Stream merge:" + newList);
    System.out.println("limit: " + collect);
    System.out.println("skip: " + collect2);
  }
}

Operation results:

Stream merging: [a, b, c, d, e, f, g] limit: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] skip: [3, 5, 7, 9, 11] today's sharing is over. If you think this article is good, share, praise and watch Sanlian, so that more people can see it

Welcome to the public official account "JavaClub", regularly sharing some dry cargo for you.

Topics: Java Interview