Linear table
summary
- Linear table is the most basic, simplest and most commonly used data structure.
- A linear table is a finite sequence of n data elements with the same characteristics.
Pioneer element: if element A is in front of element B, it is called the precursor element of B
Successor element: if element B is after element a, it is called the successor element of A
Characteristics of linear table: there is a "one-to-one" logical relationship between data elements.
- The first data element has no precursor, and this data element is called a header node;
- The last data element has no successor, and this data element is called the tail node;
- In addition to the first and last data elements, other data elements have and have only one precursor and one successor
Classification of linear tables:
The data in the linear table can be stored in sequence or chain. According to different data storage methods, the linear table can be divided into sequence
Lists and linked lists.
Sequence table
summary:
- Sequential table is a linear table saved in the form of array in computer memory
- Sequential storage of linear table refers to the sequential storage of each element in the linear table with a group of storage units with continuous addresses, so that the data elements that ring logically in the linear table are stored in adjacent physical storage units
- That is, the logical adjacency relationship between data elements is reflected through the adjacency relationship physically stored by data elements.
Sequence table API design
Sequence table class name SequenceList:
- Construction method: SequenceList(int capacity): create a SequenceList object with capacity
- Member variables:
1.private T[] eles: array of storage elements
2.private int N: length of current linear table - Member method
1.public void clear(): empty linear table
2.publicboolean isEmpty(): judge whether the linear table is empty, return true if yes, and return false if No
3.public int length(): get the number of elements in the linear table
4.public T get(int i): read and return the value of the ith element in the linear table
5. Public void insert (int i, t, t): insert a data element with a value of T before the ith element of the linear table.
6. Public void insert (T): add an element t to the linear table
7.public T remove(int i): delete and return the ith data element in the linear table.
8. Public int indexof (T): returns the bit sequence number of the specified data element that appears for the first time in the linear table. If it does not exist, it returns
Return - 1
Code implementation of sequence table
import java.util.Iterator; public class SequenceList<T> implements Iterable<T>{ //An array of storage elements private T[] eles; //Record the number of elements in the current sequence table private int N; //Construction method public SequenceList(int capacity){ //Initialize array this.eles=(T[])new Object[capacity]; //Initialization length this.N=0; } //Set a linear table as an empty table public void clear(){ this.N=0; } //Judge whether the current linear table is empty public boolean isEmpty(){ return N==0; } //Gets the length of the linear table public int length(){ return N; } //Gets the element at the specified location public T get(int i){ return eles[i]; } //Adds an element t to the linetype table public void insert(T t){ if (N==eles.length){ resize(2*eles.length); } eles[N++]=t; } //Insert element t at element i public void insert(int i,T t){ if (N==eles.length){ resize(2*eles.length); } //First, move the element at the i index and its subsequent elements backward by one bit for(int index=N;index>i;index--){ eles[index]=eles[index-1]; } //Then put the t element at the i index eles[i]=t; //Number of elements + 1 N++; } //Delete the element at the specified position i and return it public T remove(int i){ //Record the value at index i T current = eles[i]; //The elements behind index i can be moved forward one bit in turn for(int index=i;index<N-1;index++){ eles[index]=eles[index+1]; } //Number of elements - 1 N--; if (N<eles.length/4){ resize(eles.length/2); } return current; } //Find where the t element first appears public int indexOf(T t){ for(int i=0;i<N;i++){ if (eles[i].equals(t)){ return i; } } return -1; } //Reset the size of eles according to the parameter newSize public void resize(int newSize){ //Define a temporary array that points to the original array T[] temp=eles; //Create a new array eles=(T[])new Object[newSize]; //Copy the data of the original array to the new array for(int i=0;i<N;i++){ eles[i]=temp[i]; } } @Override public Iterator<T> iterator() { return new SIterator(); } private class SIterator implements Iterator{ private int cusor; public SIterator(){ this.cusor=0; } @Override public boolean hasNext() { return cusor<N; } @Override public Object next() { return eles[cusor++]; } } } //Test link public class SequenceListTest { public static void main(String[] args) { //Create sequence table object SequenceList<String> sl = new SequenceList<>(10); //Test insertion sl.insert("Wang Xianzhi"); sl.insert("Jian Jiuhuang"); sl.insert("Li Chungang"); sl.insert(1,"Xu Fengnian"); for (String s : sl) { System.out.println(s); } //Test acquisition String getResult = sl.get(1); System.out.println("The result at index 1 is:"+getResult); //Test delete String removeResult = sl.remove(0); System.out.println("The deleted elements are:"+removeResult); //Test empty sl.clear(); System.out.println("The number of elements in the cleared linear table is:"+sl.length()); } }
Linked list
summary:
- Linked list is a non continuous and non sequential storage structure on the physical storage unit. Its physical structure can not only represent the logical order of data elements. The logical order of data elements is realized through the pointer link order in the linked list
- The linked list consists of a series of nodes (each element in the linked list is called a node), which can be generated dynamically at run time.
Node API design
Class name | Node |
---|---|
Construction method | Node(T t,Node next): Create Node object |
Member variable | T item: store data Node next: points to the next node |
Implementation node class
public class Node<T> { //Storage element public T item; //Point to the next node public Node next; public Node(T item, Node next) { this.item = item; this.next = next; } }
Generate linked list:
public static void main(String[] args) throws Exception { //Build node Node<Integer> first = new Node<Integer>(11, null); Node<Integer> second = new Node<Integer>(13, null); Node<Integer> third = new Node<Integer>(12, null); Node<Integer> fourth = new Node<Integer>(8, null); Node<Integer> fifth = new Node<Integer>(9, null); //Generate linked list first.next = second; s econd.next = third; third.next = fourth; fourth.next = fifth; }
Unidirectional linked list
summary:
- Unidirectional linked list is a kind of linked list. It is composed of multiple nodes. Each node is composed of a data field and a pointer field. The data field is used to store data and the pointer field is used to point to its subsequent nodes.
- The data field of the head node of the linked list does not store data, and the pointer field points to the first node that really stores data.
One way linked list LinkList class:
- Construction method: LinkList(): create a LinkList object
- Member method:
1.public void clear(): empty linear table
2.publicboolean isEmpty(): judge whether the linear table is empty, return true if yes, and return false if No
3.public int length(): get the number of elements in the linear table
4.public T get(int i): read and return the value of the ith element in the linear table
5. Public void insert (T): add an element to the linear table;
6. Public void insert (int i, t, t): insert a data element with a value of T before the ith element of the linear table.
7.public T remove(int i): delete and return the ith data element in the linear table.
8. Public int indexof (T): returns the bit sequence number of the specified data element that appears for the first time in the linear table. If it does not exist, then
Returns - 1. - Member internal class: private class Node: node class
- Member variables:
1.private Node head: record the first node
2.private int N: record the length of the linked list
Code demonstration of one-way linked list
import java.util.Iterator; public class LinkList<T> implements Iterable<T>{ //Record header node private Node head; //Record the length of the linked list private int N; //Node class private class Node { //Store data T item; //Next node Node next; public Node(T item, Node next) { this.item = item; this.next = next; } } public LinkList() { //Initialize header node this.head = new Node(null,null); //Number of initialization elements this.N=0; } //Empty linked list public void clear() { head.next=null; this.N=0; } //Get the length of the linked list public int length() { return N; } //Determine whether the linked list is empty public boolean isEmpty() { return N==0; } //Gets the element at the specified location i public T get(int i) { //Through the loop, start from the node and look back, i times in turn, you can find the corresponding element Node n = head.next; for(int index=0;index<i;index++){ n=n.next; } return n.item; } //Add element t to linked list public void insert(T t) { //Find the last current node Node n = head; while(n.next!=null){ n=n.next; } //Create a new node and save the element t Node newNode = new Node(t, null); //Make the current last node point to the new node n.next=newNode; //Number of elements + 1 N++; } //To the specified position i, add the element t public void insert(int i, T t) { //Find the previous node at position i Node pre = head; for(int index=0;index<=i-1;index++){ pre=pre.next; } //Find the node at position i Node curr = pre.next; //Create a new node, and the new node needs to point to the node at the original i location Node newNode = new Node(t, curr); //The previous node in the original i position can point to the new node pre.next=newNode; //Number of elements + 1 N++; } //Deletes the element at the specified position i and returns the deleted element public T remove(int i) { //Find the previous node at i location Node pre = head; for(int index=0;index<=i-1;i++){ pre=pre.next; } //To find the node at i position Node curr = pre.next; //Find the next node at position i Node nextNode = curr.next; //The previous node points to the next node pre.next=nextNode; //Number of elements - 1 N--; return curr.item; } //Find the position where the element t first appears in the linked list public int indexOf(T t) { //From the beginning, find each node in turn, take out the item, and compare it with t. If it is the same, it will be found Node n = head; for(int i=0;n.next!=null;i++){ n=n.next; if (n.item.equals(t)){ return i; } } return -1; } @Override public Iterator<T> iterator() { return new LIterator(); } private class LIterator implements Iterator{ private Node n; public LIterator(){ this.n=head; } @Override public boolean hasNext() { return n.next!=null; } @Override public Object next() { n = n.next; return n.item; } } //Used to reverse the entire linked list public void reverse(){ //Judge whether the current linked list is an empty linked list. If it is an empty linked list, end the operation. If not, call the overloaded reverse method to complete the inversion if (isEmpty()){ return; } reverse(head.next); } //Reverses the specified node curr and returns the reversed node public Node reverse(Node curr){ if (curr.next==null){ head.next=curr; return curr; } //Recursively invert the next node of the current node curr; The return value is the previous node of the current node after the linked list is reversed Node pre = reverse(curr.next); //Let the next node of the returned node become the current node curr; pre.next=curr; //Make the next node of the current node null curr.next=null; return curr; } //Test code public static void main(String[] args) { //Create sequence table object LinkList<String> sl = new LinkList<>(); //Test insertion sl.insert("Wang Xianzhi"); sl.insert("Jian Jiuhuang"); sl.insert("Li Chungang"); sl.insert(1,"Xu Fengnian"); for (String s : sl) { System.out.println(s); } System.out.println("------------------------------------------"); //Test acquisition String getResult = sl.get(1); System.out.println("The result at index 1 is:"+getResult); //Test delete String removeResult = sl.remove(0); System.out.println("The deleted elements are:"+removeResult); //Test empty sl.clear(); System.out.println("The number of elements in the cleared linear table is:"+sl.length()); } }
Bidirectional linked list
summary:
- Bidirectional linked list, also known as bidirectional list, is a kind of linked list. It is composed of multiple nodes. Each node is composed of a data field and two pointer fields. The data field is used to store data. One pointer field is used to point to its successor node and the other pointer field is used to point to the predecessor node.
- The data field of the head node of the linked list does not store data, the pointer field value pointing to the predecessor node is null, and the pointer field pointing to the successor node points to the first node that actually stores data.
Bidirectional linked list TowWayLinkList class - Construction method: TowWayLinkList(): create a TowWayLinkList object
- Member method:
1.public void clear(): empty linear table
2.publicboolean isEmpty(): judge whether the linear table is empty, return true if yes, and return false if No
3.public int length(): get the number of elements in the linear table
4.public T get(int i): read and return the value of the ith element in the linear table
5. Public void insert (T): add an element to the linear table;
6. Public void insert (int i, t, t): insert a data element with a value of T before the ith element of the linear table.
7.public T remove(int i): delete and return the ith data element in the linear table.
8. Public int indexof (T): returns the bit sequence number of the specified data element that appears for the first time in the linear table. If it does not exist, then
Returns - 1.
9.public T getFirst(): get the first element
10.public T getLast(): get the last element - Member internal class: private class Node: node class
- Member variables:
1.private Node first: record the first node
2.private Node last: record tail node
2.private int N: record the length of the linked list
Bidirectional linked list code demonstration
import java.util.Iterator; public class TowWayLinkList<T> implements Iterable<T> { //First node private Node head; //Last node private Node last; //Length of linked list private int N; //Node class private class Node{ public Node(T item, Node pre, Node next) { this.item = item; this.pre = pre; this.next = next; } //Store data public T item; //Point to previous node public Node pre; //Point to the next node public Node next; } public TowWayLinkList() { //Initialize head and tail nodes this.head = new Node(null,null,null); this.last=null; //Number of initialization elements this.N=0; } //Empty linked list public void clear(){ this.head.next=null; this.head.pre=null; this.head.item=null; this.last=null; this.N=0; } //Get linked list length public int length(){ return N; } //Determine whether the linked list is empty public boolean isEmpty(){ return N==0; } //Get the first element public T getFirst(){ if (isEmpty()){ return null; } return head.next.item; } //Get the last element public T getLast(){ if (isEmpty()){ return null; } return last.item; } //Insert element t public void insert(T t){ if (isEmpty()){ //If the linked list is empty: //Create a new node Node newNode = new Node(t,head, null); //Let the new node be called the tail node last=newNode; //Let the head node point to the tail node head.next=last; }else { //If the linked list is not empty Node oldLast = last; //Create a new node Node newNode = new Node(t, oldLast, null); //Make the current tail node point to the new node oldLast.next=newNode; //Let the new node be called the tail node last = newNode; } //Number of elements + 1 N++; } //Inserts the element t at the specified location i public void insert(int i,T t){ //Find the previous node at position i Node pre = head; for(int index=0;index<i;index++){ pre=pre.next; } //Find the node at position i Node curr = pre.next; //Create a new node Node newNode = new Node(t, pre, curr); //Let the next node of the previous node at i position become a new node pre.next=newNode; //Make the previous node at i position become a new node curr.pre=newNode; //Number of elements + 1 N++; } //Gets the element at the specified location i public T get(int i){ Node n = head.next; for(int index=0;index<i;index++){ n=n.next; } return n.item; } //Find the position where the element t first appears in the linked list public int indexOf(T t){ Node n = head; for(int i=0;n.next!=null;i++){ n=n.next; if (n.next.equals(t)){ return i; } } return -1; } //Delete the element at position i and return it public T remove(int i){ //Find the previous node at position i Node pre = head; for(int index=0;index<i;index++){ pre=pre.next; } //Find the node at position i Node curr = pre.next; //Find the next node at position i Node nextNode= curr.next; //Let the next node of the previous node of i position become the next node of i position pre.next=nextNode; //Let the previous node of the next node in position I become the previous node in position i nextNode.pre=pre; //Number of elements - 1 N--; return curr.item; } @Override public Iterator<T> iterator() { return new TIterator(); } private class TIterator implements Iterator{ private Node n; public TIterator(){ this.n=head; } @Override public boolean hasNext() { return n.next!=null; } @Override public Object next() { n=n.next; return n.item; } } } //Test class public class TowWayLinkListTest { public static void main(String[] args) { //Create a two-way linked list object TowWayLinkList<String> sl = new TowWayLinkList<>(); //Test insertion sl.insert("Yao Ming"); sl.insert("Kobe"); sl.insert("McGrady"); sl.insert(1,"James"); for (String s : sl) { System.out.println(s); } System.out.println("The first element is:"+sl.getFirst()); System.out.println("The last element is:"+sl.getLast()); //Test acquisition String getResult = sl.get(1); System.out.println("The result at index 1 is:"+getResult); //Test delete String removeResult = sl.remove(0); System.out.println("The deleted elements are:"+removeResult); //Test empty sl.clear(); System.out.println("The number of elements in the cleared linear table is:"+sl.length()); }
summary
Comparison between sequential list and linked list:
- Compared with the linked list, the insertion efficiency of the sequential table is relatively low, and the size of the defined array is also fixed. Sometimes, the time-consuming increases sharply through the capacity expansion method. If there are many searches, it is recommended to use the sequential table.
- The query performance of linked list is lower than that of sequential list. Therefore, if there are many query operations in our program, it is recommended to use sequential list, and there are many addition and deletion operations, it is recommended to use linked list.