LeetCode 1293. Shortest path in grid (DP/BFS)

Posted by mountaindave on Sat, 27 Jun 2020 07:38:08 +0200

1. Title

Give you a m * n grid, where each cell is either 0 (empty) or 1 (obstacle).
At each step, you can move up, down, left and right in blank cells.

If you can remove up to k obstacles, find the shortest path from the upper left corner (0, 0) to the lower right corner (m-1, n-1), and return the steps required to pass through the path.
If such a path cannot be found, - 1 is returned.

Example 1:
Input: 
grid = 
[[0,0,0],
 [1,1,0],
 [0,0,0],
 [0,1,1],
 [0,0,0]], 
k = 1
 Output: 6
 Explanation:
The shortest path without removing any obstacles is 10.
After removing the obstacle at position (3,2), the shortest path is 6.
The path is (0,0) - > (0,1) - > (0,2) - > (1,2) - > (2,2) - > (3,2) - > (4,2)
 
Example 2:
Input:
grid = 
[[0,1,1],
 [1,1,1],
 [1,0,0]], 
k = 1
 Output: - 1
 Explanation:
We need to remove at least two obstacles to find such a path.
 
Tips:
grid.length == m
grid[0].length == n
1 <= m, n <= 40
1 <= k <= m*n
grid[i][j] == 0 or 1
grid[0][0] == grid[m-1][n-1] == 0

Source: LeetCode
Link: https://leetcode-cn.com/problems/shortest-path-in-a-grid-with-obstacles-elimination
Copyright belongs to the network. For commercial reprint, please contact the official authorization. For non-commercial reprint, please indicate the source.

2. Problem solving

  • dp[i][j][s] refers to the position (i,j), which eliminates the shortest steps of s obstacles
  • First, use BFS to search the non obstacle (0) connected with the starting point, and record the steps of dp[i][j][0] at each 0 position (the number of layers of BFS)
  • Then, in traversing all possible s, traversing all positions i, j, next position state ni, nj
  • If (grid [Ni] [NJ] & & S + 1 < = k) is an obstacle, it can also be removed
    Then dp[ni][nj][s+1] = min(dp[ni][nj][s+1], dp[i][j][s]+1)
  • If grid[ni][nj] is not an obstacle
    Then dp[ni][nj][s] = min(dp[ni][nj][s], dp[i][j][s]+1)
class Solution {
public:
    int shortestPath(vector<vector<int>>& grid, int k) {
    	vector<vector<int>> dir = {{1,0},{0,1},{0,-1},{-1,0}};
        int m = grid.size(), n = grid[0].size(), i, j, ni, nj, s = 0, d;
        vector<vector<vector<int>>> dp(m,vector<vector<int>>(n, vector<int>(k+1, INT_MAX)));
        // dp[i][j][s] refers to the position (i,j), which eliminates the shortest steps of s obstacles
        dp[0][0][0] = 0;
        vector<vector<bool>> vis(m, vector<bool>(n,false));
        queue<vector<int>> q;
        q.push({0,0});
        vis[0][0] = true;
        while (!q.empty()) //Breadth first find all 0 positions without removing obstacles
        {
        	int size = q.size();
        	while(size--)
        	{
        		i = q.front()[0];
	        	j = q.front()[1];
                q.pop();
	        	dp[i][j][0] = s;//The shortest steps without removing obstacles
	        	for(d = 0; d < 4; ++d)
	        	{
	        		ni = i+dir[d][0];
        			nj = j+dir[d][1];
        			if(ni<0 || ni >= m || nj<0 || nj >= n || vis[ni][nj] || grid[ni][nj])
        				continue;//It's out of bounds. It's been visited. It's an obstacle
        			q.push({ni,nj});
        			vis[ni][nj] = true;
	        	}
        	}
        	s++;
        }
        for(s = 0; s <= k; s++)
        {	//obstacle
        	for(i = 0; i < m; i++) 
	        {	//Location i
	        	for(j = 0; j < n; j++)
	        	{	//Location j
                    if(dp[i][j][s] == INT_MAX)
                        continue;//Status cannot be reached, next
	        		for(d= 0; d < 4; ++d)
	        		{	//Move to 4 directions, next coordinate
	        			ni = i+dir[d][0];
	        			nj = j+dir[d][1];
	        			if(ni<0 || ni >= m || nj<0 || nj >= n)
	        				continue;//Out of bounds, next
	        			if(grid[ni][nj] && s+1 <= k)//The next position is an obstacle, which can be removed
		        			dp[ni][nj][s+1] = min(dp[ni][nj][s+1], dp[i][j][s]+1);
		        		else if(!grid[ni][nj])//Not an obstacle
		        			dp[ni][nj][s] = min(dp[ni][nj][s], dp[i][j][s]+1);
	        		}
	        		
	        	}
	        }
        }
        int minstep = INT_MAX;
        for(s = 0; s <= k; ++s)
        	minstep = min(minstep, dp[m-1][n-1][s]);
        return minstep==INT_MAX ? -1 : minstep;
    }
};

640 ms 25.2 MB

  • Or direct BFS, queue memory < I, J, number of obstacle handling >
class Solution {
public:
    int shortestPath(vector<vector<int>>& grid, int k) {
    	vector<vector<int>> dir = {{1,0},{0,1},{0,-1},{-1,0}};
        int m = grid.size(), n = grid[0].size(), i, j, ni, nj, step = 0, curs, d;
        vector<vector<vector<bool>>> vis(m,vector<vector<bool>>(n, vector<bool>(k+1, false)));
        queue<vector<int>> q;
        q.push({0,0,0});// i. J, s obstacle moved several times
        vis[0][0][0] = true;
        while (!q.empty()) 
        {
        	int size = q.size();
        	while(size--)
        	{
        		i = q.front()[0];
	        	j = q.front()[1];
                curs = q.front()[2];
                if(i==m-1 && j==n-1)
                    return step;
                q.pop();
                for(d = 0; d < 4; ++d)
                {
                    ni = i+dir[d][0];
                    nj = j+dir[d][1];
                    if(ni<0 || ni >= m || nj<0 || nj >= n)
                        continue;//Out of bounds
                    if(grid[ni][nj] && curs+1 <= k && !vis[ni][nj][curs+1])//It's an obstacle. It can be removed
                    {
                        vis[ni][nj][curs+1] = true;
                        q.push({ni,nj,curs+1});
                    }
                    else if(!grid[ni][nj] && !vis[ni][nj][curs])//Not an obstacle
                    {
                        vis[ni][nj][curs] = true;
                        q.push({ni,nj,curs});
                    }
                }
        	}
        	step++;
        }
        return -1;
    }
};

400 ms 41.1 MB

Topics: network