pytorch learning notes 5: learning through examples

Posted by rnintulsa on Mon, 07 Mar 2022 15:53:41 +0100

 

1. General

 

The core of PyTorch is to provide two main functions:

  • n-dimensional tensor, similar to NumPy, but can run on GPU
  • Automatic differentiation for constructing and training neural networks
 

We will use the problem of fitting a third-order polynomial to y = sin(x) as a running example. The network will have four parameters, and gradient descent training will be carried out by minimizing the Euclidean distance between the network output and the actual output to adapt to the random data

 

2.Numpy

 

Numpy provides an n-dimensional array object and many functions for manipulating these arrays. Numpy is a general framework for scientific computing. It knows nothing about computational maps, deep learning or gradients. However, by using numpy operation to manually realize the forward and backward transmission of the network, we can easily use numpy to adapt the third-order polynomial to the sinusoidal function:

In [1]:
# -*- coding: utf-8 -*-
import numpy as np
import math

# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)

# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    # y = a + b x + c x^2 + d x^3
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d

print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')
 
99 563.8291015751557
199 375.83806540034493
299 251.52341151625967
399 169.31633903652465
499 114.95407957727652
599 79.00503300369046
699 55.23231027939239
799 39.51159649640557
899 29.115566843371823
999 22.2406918598557
1099 17.694326952652982
1199 14.687792949964951
1299 12.699545397441945
1399 11.384691566299782
1499 10.51515596801245
1599 9.940112958440231
1699 9.559821495029546
1799 9.30832244946974
1899 9.14199655493815
1999 9.031997888657425
Result: y = 0.0008026128609173351 + 0.8425118975937722 x + -0.00013846407404389141 x^2 + -0.0913064454528145 x^3
 

3. Tensor

 

Numpy is a great framework, but it can't use GPU to speed up its numerical calculation. For modern deep neural networks, GPU usually provides 50 times or higher acceleration, so unfortunately, numpy is not enough to realize modern deep learning

 

Here, we introduce the most basic PyTorch concept: tensor. PyTorch tensors are conceptually the same as numpy arrays: tensors are n-dimensional arrays, and PyTorch provides many functions that operate on these tensors. Behind the scenes, tensors can track computational graphs and gradients, but they can also be used as a general tool for scientific computing

 

Unlike numpy, PyTorch tensor can use GPU to accelerate its digital calculation. To run PyTorch tensor on GPU, you only need to specify the correct device

 

Here, we use PyTorch tensor to fit the third-order polynomial into sinusoidal function. Like the numpy example above, we need to manually realize the forward and reverse transmission through the network:

In [2]:
# -*- coding: utf-8 -*-

import torch
import math

dtype = torch.float
# device = torch.device("cpu")
device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d

print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
 
99 1039.5152587890625
199 707.0489501953125
299 482.3299560546875
399 330.28277587890625
499 227.29885864257812
599 157.47219848632812
699 110.07612609863281
799 77.86994171142578
899 55.96104431152344
999 41.04032516479492
1099 30.867229461669922
1199 23.923267364501953
1299 19.177928924560547
1399 15.93132209777832
1499 13.707606315612793
1599 12.182741165161133
1699 11.135905265808105
1799 10.416431427001953
1899 9.92137622833252
1999 9.580371856689453
Result: y = 0.023760870099067688 + 0.8410876393318176 x + -0.004099148791283369 x^2 + -0.09110385179519653 x^3
 

4.Autograd

 

In the above example, we must manually implement the forward and backward transfer of the neural network. For small two-layer networks, manual reverse transfer is not a big problem, but for large complex networks, it can quickly become very troublesome

 

Fortunately, we can use automatic differentiation to automatically calculate the back propagation in neural networks. The Autograd package in PyTorch provides this function. When using Autograd, the forward propagation of the network will define the calculation diagram; The input tensor of the node in the graph is the edge tensor. Then the gradient can be easily calculated by back propagation through the graph

 

This sounds complicated and very simple in practice. Each tensor represents a node in the calculation graph. If x has x.requires_grad=True tensor, then x.grad is another tensor that maintains the gradient of X relative to a scalar value

 

Here, we use PyTorch tensor and Autograd to implement our sine function and third-order polynomial examples; Now we no longer need to manually implement reverse delivery through the network:

In [3]:
# -*- coding: utf-8 -*-
import torch
import math

dtype = torch.float
# device = torch.device("cpu")
device = torch.device("cuda:0")  # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((), device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y using operations on Tensors.
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
    # the gradient of the loss with respect to a, b, c, d respectively.
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
 
99 110.25205993652344
199 78.43357849121094
299 56.650428771972656
399 41.72026824951172
499 31.475496292114258
599 24.437694549560547
699 19.597450256347656
799 16.264957427978516
899 13.967991828918457
999 12.38306999206543
1099 11.288278579711914
1199 10.531269073486328
1299 10.007284164428711
1399 9.644231796264648
1499 9.39242935180664
1599 9.21764087677002
1699 9.096193313598633
1799 9.011730194091797
1899 8.952939987182617
1999 8.911981582641602
Result: y = -0.009276128374040127 + 0.8526148796081543 x + 0.0016002863412722945 x^2 + -0.09274350851774216 x^3
 

5. Redefine Autograd

 

Behind the scenes, each original Autograd operator is actually two functions running on tensors. The forward function calculates the output tensor from the input tensor. The inverse function receives the gradient of the output tensor relative to a scalar value and calculates the gradient of the input tensor relative to the same scalar value

 

In PyTorch, we can define torch Autograd. Function and implement forward and backward functions to easily define your own Autograd operator. Then, we can construct an instance and call the new Autograd operator like a function, and pass the tensor containing the input data

 

In this example, we define the model as y = a + b P 3 Instead of y = a + bx + cx ^ 2 + dx ^ 3, where P 3 =1/2 (5x ^ 3 - 3x) is a cubic Legendre polynomial. We write our own custom Autograd function to calculate the forward and backward of P[3], and use it to implement our model:

In [4]:
# -*- coding: utf-8 -*-
import torch
import math

class LegendrePolynomial3(torch.autograd.Function):
    """
    We can implement our own custom autograd Functions by subclassing
    torch.autograd.Function and implementing the forward and backward passes
    which operate on Tensors.
    """

    @staticmethod
    def forward(ctx, input):
        """
        In the forward pass we receive a Tensor containing the input and return
        a Tensor containing the output. ctx is a context object that can be used
        to stash information for backward computation. You can cache arbitrary
        objects for use in the backward pass using the ctx.save_for_backward method.
        """
        ctx.save_for_backward(input)
        return 0.5 * (5 * input ** 3 - 3 * input)

    @staticmethod
    def backward(ctx, grad_output):
        """
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        input, = ctx.saved_tensors
        return grad_output * 1.5 * (5 * input ** 2 - 1)

dtype = torch.float
# device = torch.device("cpu")
device = torch.device("cuda:0")  # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)

learning_rate = 5e-6
for t in range(2000):
    # To apply our Function, we use Function.apply method. We alias this as 'P3'.
    P3 = LegendrePolynomial3.apply

    # Forward pass: compute predicted y using operations; we compute
    # P3 using our custom autograd operation.
    y_pred = a + b * P3(c + d * x)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass.
    loss.backward()

    # Update weights using gradient descent
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')
 
99 209.95834350585938
199 144.66018676757812
299 100.70249938964844
399 71.03520202636719
499 50.978515625
599 37.40313720703125
699 28.20686912536621
799 21.973186492919922
899 17.745729446411133
999 14.877889633178711
1099 12.931766510009766
1199 11.610918998718262
1299 10.714248657226562
1399 10.105474472045898
1499 9.692106246948242
1599 9.411375045776367
1699 9.220745086669922
1799 9.091285705566406
1899 9.003361701965332
1999 8.943639755249023
Result: y = -1.765793067320942e-11 + -2.208526849746704 * P3(9.924167737596079e-11 + 0.2554861009120941 x)
 

6.nn module

 

Computational graphs and Autograd are very powerful examples of defining complex operators and automatically adopting derivatives. However, for large neural networks, the original Autograd may be too low-level

 

When building neural networks, we often think of arranging calculations in layers, some of which have learnable parameters, which will be optimized during learning

 

In TensorFlow, packages such as Keras, TensorFlow slim and TFLearn provide a higher level of abstraction on the original calculation diagram, which can be used to build neural networks

 

In PyTorch, the nn package achieves the same goal. nn package defines a set of modules, which are roughly equivalent to the neural network layer. The module receives the input tensor and calculates the output tensor, but can also maintain an internal state, such as a tensor containing learnable parameters. nn package also defines a set of useful loss functions, which are usually used in training neural networks

 

In this example, we use nn packet to implement our polynomial model network:

In [5]:
# -*- coding: utf-8 -*-
import torch
import math

# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# For this example, the output y is a linear function of (x, x^2, x^3), so
# we can consider it as a linear layer neural network. Let's prepare the
# tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape
# (3,), for this case, broadcasting semantics will apply to obtain a tensor
# of shape (2000, 3) 

# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. The Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
# The Flatten layer flatens the output of the linear layer to a 1D tensor,
# to match the shape of `y`.
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
    torch.nn.Flatten(0, 1)
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-6
for t in range(2000):

    # Forward pass: compute predicted y by passing x to the model. Module objects
    # override the __call__ operator so you can call them like functions. When
    # doing so you pass a Tensor of input data to the Module and it produces
    # a Tensor of output data.
    y_pred = model(xx)

    # Compute and print loss. We pass Tensors containing the predicted and true
    # values of y, and the loss function returns a Tensor containing the
    # loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero the gradients before running the backward pass.
    model.zero_grad()

    # Backward pass: compute gradient of the loss with respect to all the learnable
    # parameters of the model. Internally, the parameters of each Module are stored
    # in Tensors with requires_grad=True, so this call will compute gradients for
    # all learnable parameters in the model.
    loss.backward()

    # Update the weights using gradient descent. Each parameter is a Tensor, so
    # we can access its gradients like we did before.
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

# You can access the first layer of `model` like accessing the first item of a list
linear_layer = model[0]

# For linear layer, its parameters are stored as `weight` and `bias`.
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
 
99 1616.1385498046875
199 1081.325927734375
299 724.8551635742188
399 487.138671875
499 328.5332946777344
599 222.65386962890625
699 151.9323272705078
799 104.66616821289062
899 73.05643463134766
999 51.903411865234375
1099 37.738162994384766
1199 28.24566650390625
1299 21.879676818847656
1399 17.607154846191406
1499 14.73743724822998
1599 12.808303833007812
1699 11.510335922241211
1799 10.636259078979492
1899 10.047100067138672
1999 9.649618148803711
Result: y = 0.018086636438965797 + 0.8341416120529175 x + -0.0031202451791614294 x^2 + -0.09011583775281906 x^3
 

7.optim

 

So far, we have used torch no_ Grad () manually changes the tensor holding the learnable parameter to update the weight of the model. This is not a huge burden for simple optimization algorithms such as random gradient descent, but in practice, we often use more complex optimizers (such as AdaGrad, RMSProp, Adam, etc.) to train neural networks

 

The optim package in PyTorch abstracts the idea of optimization algorithms and provides the implementation of common optimization algorithms

 

In this example, we will use the nn package to define our model as before, but we will use the RMSprop algorithm provided by optim package to optimize the model:

In [6]:
# -*- coding: utf-8 -*-
import torch
import math

# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
    torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
    # Forward pass: compute predicted y by passing x to the model.
    y_pred = model(xx)

    # Compute and print loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the variables it will update (which are the learnable
    # weights of the model). This is because by default, gradients are
    # accumulated in buffers( i.e, not overwritten) whenever .backward()
    # is called. Checkout docs of torch.autograd.backward for more details.
    optimizer.zero_grad()

    # Backward pass: compute gradient of the loss with respect to model
    # parameters
    loss.backward()

    # Calling the step function on an Optimizer makes an update to its
    # parameters
    optimizer.step()

linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
 
99 35157.9453125
199 17403.95703125
299 8047.3486328125
399 3556.0693359375
499 1893.0379638671875
599 1428.3843994140625
699 1216.1593017578125
799 1016.4676513671875
899 824.1697998046875
999 651.5247192382812
1099 504.0408935546875
1199 381.1749267578125
1299 279.7773742675781
1399 197.03244018554688
1499 131.4590301513672
1599 81.9945068359375
1699 47.25548553466797
1799 25.561182022094727
1899 14.26343822479248
1999 9.908321380615234
Result: y = -0.0006100632017478347 + 0.8261058926582336 x + -0.0006362820276990533 x^2 + -0.08855490386486053 x^3
 

8. Custom nn module

 

Sometimes you will need to specify a more complex model than a series of existing modules. For these cases, you can subclass NN Module and define a forward to define its own module. The module uses other modules or other automatic conversion operations on Tensors to receive input Tensors and generate output Tensors

 

In this example, we implement the third-order polynomial as a custom Module subclass:

In [7]:
# -*- coding: utf-8 -*-
import torch
import math

class Polynomial3(torch.nn.Module):
    def __init__(self):
        """
        In the constructor we instantiate four parameters and assign them as
        member parameters.
        """
        super().__init__()
        self.a = torch.nn.Parameter(torch.randn(()))
        self.b = torch.nn.Parameter(torch.randn(()))
        self.c = torch.nn.Parameter(torch.randn(()))
        self.d = torch.nn.Parameter(torch.randn(()))

    def forward(self, x):
        """
        In the forward function we accept a Tensor of input data and we must return
        a Tensor of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Tensors.
        """
        return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3

    def string(self):
        """
        Just like any class in Python, you can also define custom method on PyTorch modules
        """
        return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'

# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = Polynomial3()

# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the nn.Linear
# module which is members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print(f'Result: {model.string()}')
 
99 1308.099365234375
199 910.4903564453125
299 635.1412353515625
399 444.26885986328125
499 311.8292541503906
599 219.847900390625
699 155.90786743164062
799 111.42127990722656
899 80.44319152832031
999 58.854122161865234
1099 43.796546936035156
1199 33.28647232055664
1299 25.9451961517334
1399 20.813724517822266
1499 17.22447967529297
1599 14.712332725524902
1699 12.953007698059082
1799 11.720170974731445
1899 10.855795860290527
1999 10.249417304992676
Result: y = -0.037933703511953354 + 0.8685634732246399 x + 0.006544196978211403 x^2 + -0.09501205384731293 x^3
 

9. Control flow and weight sharing

 

As an example of dynamic graph and weight sharing, we implement a very strange model: a third-order polynomial, select a random number between 3 and 5 in each forward propagation, and use this order to repeatedly calculate the fourth and fifth orders with the same weight multiple times

 

For this model, we can use the conventional Python flow control to realize the loop, and we can realize the weight sharing by simply reusing the same parameters many times when defining the forward propagation

 

We can easily implement this model as a subclass of Module:

In [8]:
# -*- coding: utf-8 -*-
import random
import torch
import math

class DynamicNet(torch.nn.Module):
    def __init__(self):
        """
        In the constructor we instantiate five parameters and assign them as members.
        """
        super().__init__()
        self.a = torch.nn.Parameter(torch.randn(()))
        self.b = torch.nn.Parameter(torch.randn(()))
        self.c = torch.nn.Parameter(torch.randn(()))
        self.d = torch.nn.Parameter(torch.randn(()))
        self.e = torch.nn.Parameter(torch.randn(()))

    def forward(self, x):
        """
        For the forward pass of the model, we randomly choose either 4, 5
        and reuse the e parameter to compute the contribution of these orders.

        Since each forward pass builds a dynamic computation graph, we can use normal
        Python control-flow operators like loops or conditional statements when
        defining the forward pass of the model.

        Here we also see that it is perfectly safe to reuse the same parameter many
        times when defining a computational graph.
        """
        y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
        for exp in range(4, random.randint(4, 6)):
            y = y + self.e * x ** exp
        return y

    def string(self):
        """
        Just like any class in Python, you can also define custom method on PyTorch modules
        """
        return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3 + {self.e.item()} x^4 ? + {self.e.item()} x^5 ?'

# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = DynamicNet()

# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
for t in range(30000):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    if t % 2000 == 1999:
        print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print(f'Result: {model.string()}')
 
1999 4006.545166015625
3999 1704.7608642578125
5999 790.6707763671875
7999 356.1207275390625
9999 161.2637481689453
11999 74.07376098632812
13999 38.51034164428711
15999 21.840112686157227
17999 14.520430564880371
19999 11.310136795043945
21999 9.908504486083984
23999 9.299556732177734
25999 8.865952491760254
27999 8.918462753295898
29999 8.871894836425781
Result: y = 0.0011926052393391728 + 0.8512187004089355 x + -0.0006726108840666711 x^2 + -0.09276143461465836 x^3 + 0.00010200009273830801 x^4 ? + 0.00010200009273830801 x^5 ?
 

10. References

 

[1]Learn PyTorch by example

[2]LEARNING PYTORCH WITH EXAMPLES

Topics: Python Pytorch