[solution] P4119 [Ynoi2018] Future Diary

Posted by mdgalib on Tue, 01 Feb 2022 11:00:00 +0100

meaning of the title

P4119 [Ynoi2018] Future Diary

Given a sequence with a length of \ (n \) and \ (m \) operations, each operation can:

  1. Change all values \ (x \) in \ ([l, r] \) to the value \ (y \)

  2. Query the value smaller than \ (k \) in \ ([l, r] \)

The same value is counted multiple times.

\(1 \leq n, m, a_i \leq 10^5\)

thinking

Initially divided into blocks.

Block + value range block + joint search set.

Obviously, the idea is to find the small value of static \ (k \) by binary tree array, but the complexity is not right.

Consider using range blocks instead of bisection.

Divide the value range \ ([1, 10 ^ 5] \) into \ (\ sqrt{10^5} \) blocks.

Let \ (sum1 {i, j} \) represent the number of values in the \ (j \) value range block in the first \ (i \) block, and \ (sum2 {i, j} \) represent the number of values \ (j \) in the first \ (i \) block. These two arrays can be preprocessed with \ (\ mathcal{O}(n \sqrt{n}) \).

When inquiring about \ ([l, r] \), process additionally \ (cnt1 {j} \) represents the number of values in the \ (j \) value range block in the hash block, \ (CNT2 {j} \) represents the number of values \ (j \) in the hash block. When the block length is \ (\ sqrt{n} \), the complexity of processing these two arrays is \ (\ mathcal{O}(\sqrt{n}) \)

Suppose the inquiry is smaller than \ (k \).

First, determine the value range block where the \ (k \) smallest value is located. The specific implementation can make \ (sum \) initially \ (0 \), and when enumerating the range block \ (i \), the order \ (sum \) continuously accumulates the number of values in the \ (i \) range block in \ ([l, r] \) (calculated with the array \ (\ mathcal{O}(1) \) processed above). When \ (sum \geq k \), it indicates that the value is in the \ (i \) range block. The complexity of enumeration range block is \ (\ mathcal{O}(\sqrt{n}) \)

Then enumerate the values in the value range block, and use the method similar to the above to find the small value of \ (k \). Complexity is also \ (\ mathcal{O}(\sqrt{n}) \)

be similar to P4117 [Ynoi2018] colorful world , maintenance \ (rt_{I, j}, val_{I, j}, pos_, I \)\ (RT {I, j} = k \) indicates that \ (K \) is the value in the \ (I \) th block \ (j \) and the root of the query set is \ (K \), \ (Val {I, j} = k \) indicates that the value corresponding to the root in the \ (I \) th block \ (j \) is \ (K \), \ (pos_i = RT {I, a_i} \)

You can modify and reconstruct the scattered blocks directly, and the complexity is \ (\ mathcal{O}(\sqrt{n}) \)

Modifying the whole block \ (i \) can be divided into three cases:

  • \There is no \ (x \) in ([l, r] \), skip;

  • \([l, r] \) has \ (x \) and no \ (Y \), making RT [i] [y] = RT [i] [x], Val [i] [RT [i] [x] = y, RT [i] [x] = 0

  • \([l, r] \) contains \ (x \) and \ (y \). Obviously, the maximum number of different values in the sequence is \ (n + m \), in this case, the number of values in each block will be reduced by \ (1 \), and the average total complexity of violent reconstruction is \ (\ mathcal{O}((n + m)\sqrt{n}) \), which can be used directly

Time complexity \ (\ mathcal{O}((n + m) \sqrt{n}) \)

code

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;

const int maxn = 1e5 + 5;
const int maxk = 320;

int n, m;
int block, tot;
int st[maxk], ed[maxk];
int a[maxn], bel[maxn];
int cnt1[maxk], sum1[maxk][maxk];
int cnt2[maxn], sum2[maxk][maxn];
int rt[maxk][maxn], val[maxk][maxn], pos[maxn];

void reduce(int idx) {
	for (int i = st[idx]; i <= ed[idx]; i++) {
		a[i] = val[idx][pos[i]];
	}
}

void build(int idx) {
	int cur = 0;
	for (int i = 1; i <= block; i++) {
		rt[idx][val[idx][i]] = 0;
	}
	for (int i = st[idx]; i <= ed[idx]; i++) {
		if (!rt[idx][a[i]]) {
			cur++;
			rt[idx][a[i]] = cur;
			val[idx][cur] = a[i];
		}
		pos[i] = rt[idx][a[i]];
	}
}

void modify(int l, int r, int x, int y) {
	for (int i = l; i <= r; i++) {
		if (a[i] == x) {
			sum1[bel[i]][bel[x]]--;
			sum1[bel[i]][bel[y]]++;
			sum2[bel[i]][x]--;
			sum2[bel[i]][y]++;
			a[i] = y;
		}
	}
}

void merge(int idx, int x, int y) {
	rt[idx][y] = rt[idx][x];
	val[idx][rt[idx][x]] = y;
	rt[idx][x] = 0;
}

void update(int l, int r, int x, int y) {
	if ((x == y) || (sum2[bel[r]][x] - sum2[bel[l] - 1][x] == 0)) {
		return;
	}
	for (int i = bel[n]; i >= bel[l]; i--) {
		sum1[i][bel[x]] -= sum1[i - 1][bel[x]];
		sum1[i][bel[y]] -= sum1[i - 1][bel[y]];
		sum2[i][x] -= sum2[i - 1][x];
		sum2[i][y] -= sum2[i - 1][y];
	}
	if (bel[l] == bel[r]) {
		reduce(bel[l]);
		modify(l, r, x, y);
		build(bel[l]);
		for (int i = bel[l]; i <= bel[n]; i++) {
			sum1[i][bel[x]] += sum1[i - 1][bel[x]];
			sum1[i][bel[y]] += sum1[i - 1][bel[y]];
			sum2[i][x] += sum2[i - 1][x];
			sum2[i][y] += sum2[i - 1][y];
		}
	} else {
		reduce(bel[l]);
		modify(l, ed[bel[l]], x, y);
		build(bel[l]);
		reduce(bel[r]);
		modify(st[bel[r]], r, x, y);
		build(bel[r]);
		for (int i = bel[l] + 1; i < bel[r]; i++) {
			if (!sum2[i][x]) {
				continue;
			} else if (sum2[i][y]) {
				reduce(i);
				modify(st[i], ed[i], x, y);
				build(i);
			} else {
				sum1[i][bel[y]] += sum2[i][x];
				sum1[i][bel[x]] -= sum2[i][x];
				sum2[i][y] += sum2[i][x];
				sum2[i][x] = 0;
				merge(i, x, y);
			}
		}
		for (int i = bel[l]; i <= bel[n]; i++) {
			sum1[i][bel[x]] += sum1[i - 1][bel[x]];
			sum1[i][bel[y]] += sum1[i - 1][bel[y]];
			sum2[i][x] += sum2[i - 1][x];
			sum2[i][y] += sum2[i - 1][y];
		}
	}
}

int query(int l, int r, int k) {
	int ans, sum = 0;
	if (bel[l] == bel[r]) {
		reduce(bel[l]);
		for (int i = l; i <= r; i++) {
			cnt2[i] = a[i];
		}
		nth_element(cnt2 + l, cnt2 + l + k - 1, cnt2 + r + 1);
		ans = cnt2[l + k - 1];
		for (int i = l; i <= r; i++) {
			cnt2[i] = 0;
		}
		return ans;
	}
	reduce(bel[l]);
	for (int i = l; i <= ed[bel[l]]; i++) {
		cnt1[bel[a[i]]]++;
		cnt2[a[i]]++;
	}
	reduce(bel[r]);
	for (int i = st[bel[r]]; i <= r; i++) {
		cnt1[bel[a[i]]]++;
		cnt2[a[i]]++;
	}
	for (int i = 1; i <= bel[100000]; i++) {
		if ((sum + cnt1[i] + sum1[bel[r] - 1][i] - sum1[bel[l]][i]) >= k) {
			for (int j = (i - 1) * block + 1; j <= i * block; j++) {
				if ((sum + cnt2[j] + sum2[bel[r] - 1][j] - sum2[bel[l]][j]) >= k) {
					for (int k = l; k <= ed[bel[l]]; k++) {
						cnt1[bel[a[k]]]--;
						cnt2[a[k]]--;
					}
					for (int k = st[bel[r]]; k <= r; k++) {
						cnt1[bel[a[k]]]--;
						cnt2[a[k]]--;
					}
					return j;
				} else {
					sum += (cnt2[j] + sum2[bel[r] - 1][j] - sum2[bel[l]][j]);
				}
			}
		} else {
			sum += (cnt1[i] + sum1[bel[r] - 1][i] - sum1[bel[l]][i]);
		}
	}
}

int main() {
	int opt, l, r, x, y, k;
	scanf("%d%d", &n, &m);
	block = sqrt(n);
	tot = ceil(n * 1.0 / block);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}
	for (int i = 1; i < maxn; i++) {
		bel[i] = (i - 1) / block + 1;
	}
	for (int i = 1; i <= tot; i++) {
		st[i] = (i - 1) * block + 1;
		ed[i] = i * block;
	}
	ed[tot] = n;
	for (int i = 1; i <= tot; i++) {
		build(i);
	}
	for (int i = 1; i <= tot; i++) {
		for (int j = 1; j < maxk; j++) {
			sum1[i][j] = sum1[i - 1][j];
		}
		for (int j = 1; j < maxn; j++) {
			sum2[i][j] = sum2[i - 1][j];
		}
		for (int j = st[i]; j <= ed[i]; j++) {
			sum1[i][bel[a[j]]]++;
			sum2[i][a[j]]++;
		}
	}
	for (int i = 1; i <= m; i++) {
		scanf("%d", &opt);
		if (opt == 1) {
			scanf("%d%d%d%d", &l, &r, &x, &y);
			update(l, r, x, y);
		} else {
			scanf("%d%d%d", &l, &r, &k);
			printf("%d\n", query(l, r, k));
		}
	}
	return 0;
}