meaning of the title
Sol
It's a very good question. Fortunately, I didn't play this game. Otherwise, I guess I will die on this question qwq
It doesn't mean how difficult it is. The key is that there are too many details. wcz and I had a chat about my ideas. Then he wrote it all night and didn't call out the qwq
It's quite a routine to solve it. First put forward a $x$
And then maintain a bunch of convex shells corresponding to the straight lines
It can be divided into two parts on convex shell.
Because the $x $of this question is very small, just deal with the answer directly
/* */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<map> #include<vector> #include<set> #include<queue> #include<cmath> //#include<ext/pb_ds/assoc_container.hpp> //#include<ext/pb_ds/hash_policy.hpp> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define ull unsigned long long #define rg register #define pt(x) printf("%d ", x); //#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++) //char buf[(1 << 22)], *p1 = buf, *p2 = buf; //char obuf[1<<24], *O = obuf; //void print(int x) {if(x > 9) print(x / 10); *O++ = x % 10 + '0';} //#define OS *O++ = ' '; using namespace std; //using namespace __gnu_pbds; const int MAXN = 1e6 + 10, INF = 1e9 + 10, mod = 1e9 + 7, BB = 32323; const double eps = 1e-9; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N; struct Node { double a, b; bool operator < (const Node &rhs) const { return a == rhs.a ? b < rhs.b : a < rhs.a; } }P[MAXN], s1[MAXN], s2[MAXN]; int t1 = 0, t2 = 0, ans[MAXN]; double cross(Node x, Node y) { // printf("%lf\n", 1.0 * (y.b - x.b) / (x.a - x.b)); return 1.0 * (y.b - x.b) / (x.a - y.a); } void Get() { sort(P + 1, P + N + 1); s1[++t1] = P[1]; for(int i = 2; i <= N; i++) { if(t1 && P[i].a == s1[t1].a) t1--; while(t1 > 1 && cross(P[i], s1[t1]) <= cross(s1[t1], s1[t1 - 1])) t1--; s1[++t1] = P[i]; } for(int i = 1; i <= N; i++) P[i].b = -P[i].b; sort(P + 1, P + N + 1); s2[++t2] = P[1]; for(int i = 2; i <= N; i++) { if(t1 && P[i].a == s2[t2].a) t2--; while(t2 > 1 && cross(P[i], s2[t2]) <= cross(s2[t2], s2[t2 - 1])) t2--; s2[++t2] = P[i]; } } int Query(Node p, int x) { return p.a * x * x + p.b * x; } void MakeAns() { for(int i = 1, c = 1; i <= BB; i++) { //printf("%lf\n", cross(s1[c], s1[c + 1])); while(c < t1 && cross(s1[c], s1[c + 1]) <= (double)i) c++; ans[i + BB] = Query(s1[c], i); } for(int i = 1, c = 1; i <= BB; i++) { while(c < t2 && cross(s2[c], s2[c + 1]) <= (double)i) c++; ans[BB - i] = Query(s2[c], i); } } main() { // freopen("a.in", "r", stdin); N = read(); int Q = read(); for(int i = 1; i <= N; i++) P[i].a = read(), P[i].b = read(); Get(); MakeAns(); while(Q--) { int x = read(); printf("%lld\n", ans[x + BB]); } return 0; } /* 2 2 1 1 1 2 1 1 */