1, Introduction to particle swarm optimization
1 concept of particle swarm optimization
Particle swarm optimization (PSO) is an evolutionary computing technology, which originates from the research on the predation behavior of birds. The basic idea of particle swarm optimization algorithm is to find the optimal solution through the cooperation and information sharing among individuals in the population
The advantage of PSO is that it is simple and easy to implement, and there is no adjustment of many parameters. At present, it has been widely used in function optimization, neural network training, fuzzy system control and other application fields of genetic algorithm.
2 particle swarm optimization analysis
2.1 basic ideas
Particle swarm optimization algorithm designs a massless particle to simulate the birds in the bird swarm. The particle has only two attributes: speed and position. Speed represents the speed of movement and position represents the direction of movement. Each particle separately searches for the optimal solution in the search space, records it as the current individual extreme value, shares the individual extreme value with other particles in the whole particle swarm, and finds the optimal individual extreme value as the current global optimal solution of the whole particle swarm, All particles in the particle swarm adjust their speed and position according to the current individual extreme value found by themselves and the current global optimal solution shared by the whole particle swarm. The following dynamic diagram vividly shows the process of PSO algorithm:
2 update rules
PSO is initialized as a group of random particles (random solutions). Then the optimal solution is found by iteration. In each iteration, the particles update themselves by tracking two "extreme values" (pbest, gbest). After finding these two optimal values, the particle updates its speed and position through the following formula.
The first part of formula (1) is called [memory item], which indicates the influence of the last speed and direction; the second part of formula (1) is called [self cognition item], which is a vector from the current point to the best point of the particle itself, which indicates that the action of the particle comes from its own experience; the third part of formula (1) is called [group cognition item] is a vector from the current point to the best point of the population, which reflects the cooperation and knowledge sharing among particles. Particles determine the next movement through their own experience and the best experience of their peers. Based on the above two formulas, it forms the standard form of PSO.
Equations (2) and (3) are considered as standard PSO algorithms.
3 PSO algorithm flow and pseudo code
2, Source code
clear clc close all %% Parameter initialization c1=2.05; c2=2.05; maxgen=5000; sizepop=30; k=0.6; % wV=1.1; wP=1.1; v=5; popmax=30; popmin=-30; % pso_option = struct('c1',1.5,'c2',1.7,'maxgen',200,'sizepop',20, ... % 'k',0.6,'wV',1,'wP',1,'v',5, ... % 'popcmax',100,'popcmin',0.1,'popgmax',10^3,'popgmin',10^(-2)); % c1:The initial value is 1.5,pso Parameter local search capability % c2:The initial value is 1.7,pso Parameter global search capability % maxgen:Initially 200,Maximum evolutionary quantity % sizepop:Initial 20,Maximum population % k:Initial 0.6(k belongs to [0.1,1.0]),Rate and x Relationship between(V = kX) % wV:The initial value is 1(wV best belongs to [0.8,1.2]),Elastic coefficient in front of velocity in rate update formula % wP:The initial value is 1,Elastic coefficient in front of velocity in population renewal formula % v:Initially 5,SVM Cross Validation parameter % popcmax:Initially 100,SVM parameter c Maximum value of change in. % popcmin:Initial 0.1,SVM parameter c Minimum value of change. % popgmax:Initially 1000,SVM parameter g Maximum value of change in. % popgmin:Initial 0.01,SVM parameter c Minimum value of change. D=10; %%%dimension Vmax =k*popmax; Vmin = -Vmax ; eps =1E-5; %% Generate initial particles and velocities pop=zeros(sizepop,D); V=zeros(sizepop,D); fitness=zeros(sizepop,1); for i=1:sizepop % Randomly generated population and speed pop(i,:) = (popmax-popmin)*rand(1,D)+popmin; V(i,:)=Vmax*rands(1,D); % Calculate initial fitness fitness(i)=myfunc_fit1(pop(i,:)); end Xd_ave0=repmat(sum(pop)/sizepop,sizepop,1); D_t0=sum((sum((pop-Xd_ave0).^2,2)).^0.5)/sizepop/(popmax-popmin); wV=1/(1+exp(-12*(D_t0-0.5))); D_min=D_t0*0.2; % Find extreme value and extreme point [global_fitness bestindex]=min(fitness); % Global extremum local_fitness=fitness; % Individual extremum initialization global_x=pop(bestindex,:); % Global extreme point local_x=pop; % Individual extreme point initialization % Average fitness of each generation population avgfitness_gen = zeros(maxgen,1); fit_gen=zeros(maxgen,1); %% Iterative optimization for i=1:maxgen for j=1:sizepop %Speed update V(j,:) = wV*V(j,:) + c1*rand*(local_x(j,:) - pop(j,:)) + c2*rand*(global_x - pop(j,:)); if find(V(j,:) > Vmax) V_maxflag=find(V(j,:) > Vmax); V(j,V_maxflag) = Vmax; end if find(V(j,1) < Vmin) V_minflag=find(V(j,1) < Vmin); V(j,V_minflag) = Vmin; end %Population regeneration pop(j,:)=pop(j,:) + wP*V(j,:); if find(pop(j,:) > popmax) pop_maxflag=find(pop(j,:) > popmax); pop(j,pop_maxflag) = popmax; end if find(pop(j,:) < popmin) pop_minflag=find(pop(j,:) < popmin); pop(j,pop_minflag) = popmin; end % Adaptive particle mutation if rand>0.5 k=ceil(2*rand); pop(j,k) = (popmax-popmin)*rand + popmin; end %Fitness value fitness(j)=myfunc_fit1(pop(j,:)); %Individual optimal update if fitness(j) < local_fitness(j) local_x(j,:) = pop(j,:); local_fitness(j) = fitness(j); end % if fitness(j) == local_fitness(j) && length(pop(j,:) < local_x(j,:)) % local_flag=find(pop(j,:) < local_x(j,:)); % local_x(j,local_flag) = pop(j,local_flag); % local_fitness(j) = fitness(j); % end %Group optimal update if fitness(j) < global_fitness global_x = pop(j,:); global_fitness = fitness(j); end function C=PSO_FUNC(X) global G_AC T_C hour_num Wind_V C_W=110; %%%Wind power generation P_W=100; u_PW=6; m_WG=20; r0=0.06; v_ci=3; %Cut in wind speed v_r=12; %Rated wind speed v_co=25; %Cut off wind speed P_r=P_W; V_t=repmat(Wind_V(:,3),52,1); C_S=0.7; %%%%Photovoltaic power generation P_S=0.2; u_PS=0.009; m_PV=25; C_B=0.5; %%%Battery u_WB=0.0014; m_B=5; sigam_bat=1e-4; %%%Self discharge rate N_B=2000; W_B=0.64; Wbat_0=0.5*N_B*W_B; Pbat_max=0.2*N_B*W_B; Pbat_min=-0.2*N_B*W_B; Pbat_maxt=Pbat_max; Pbat_mint=Pbat_min; Wbat_t=zeros(hour_num,1); Wbat_t(1)=Wbat_0; %%%Remaining power Pbat_t=zeros(hour_num,1); Pbat_t(1)=Pbat_max; C_d=10; %%%Diesel generator u_Pd=0.95; P=4.62; Q_d0=0.22; m_die=10; P_STC=0.2; G_STC=1; K=-0.47; Tr=298.15; T_C=T_C+273.15; P1_t=300; %%%Peak residential load KW Pdes_t=200; %%%Desalination load KW P_des=25; %%%Rated power of single seawater desalination unit KW N_des=8; %%%Total number of seawater desalination units G_des=100/24; %%%The hourly water production of a single unit is 100 t/d Rwater_t=500/24; %%%All day water demand on the island t Rdes_min=0; Rdes_max=8*100/24; eta_c=0.97; Rdes_t=zeros(hour_num,1); Rdes_t(1)=Rdes_max; %%Initial storage P_PV=zeros(hour_num,1); P_WG=zeros(hour_num,1); P_PVM_t=zeros(hour_num,1); P_WGM_t=zeros(hour_num,1); P_net_t=zeros(hour_num,1); Pdie_t=zeros(hour_num,1); C_f=0; %%%Annual cost of diesel yeushu1=0; yeushu2=0; yeushu3=0; yeushu4=0; yeushu5=0; yeushu6=0; yeushu7=0; yeushu8=0; for i=1:hour_num P_PV(i)=P_STC*G_AC(i).*(1+K*(T_C(i)-Tr))/G_STC; a=P_r/(v_r^3-v_ci^3); b=v_ci^3/(v_r^3-v_ci^3); if (V_t(i)<v_ci) P_WG(i)=0; elseif (v_ci<V_t(i)<v_r) P_WG(i)=a*V_t(i)^3-b*P_r; elseif (v_r<V_t(i)<v_co) P_WG(i)=P_r; else P_WG(i)=0; end if(Rdes_t(i)-Rdes_max>=Rwater_t) Ndes_mint=0; else Ndes_mint=(Rwater_t-(Rdes_t(i)-Rdes_max))/G_des; end if(Rdes_t(i)+N_des*P_des-Rwater_t<=Rdes_max) Ndes_maxt=N_des*P_des; else Ndes_maxt=(Rdes_max+Rwater_t-Rdes_t(i))/P_des; end Pdes_mint=Ndes_mint*P_des; Pdes_maxt=Ndes_maxt*P_des; P_PVM_t(i)=P_PV(i); P_WGM_t(i)=P_WG(i); P_net_t(i)=P_WGM_t(i)+P_PVM_t(i)-P1_t; if(i>=2) Pbat_maxt=min([Pbat_max ((1-sigam_bat)*Wbat_t(i)-((1-sigam_bat)*Wbat_t(i)+Pbat_t(i)))*eta_c]); Pbat_mint=max([Pbat_min ((1-sigam_bat)*Wbat_t(i)-((1-sigam_bat)*Wbat_t(i)+Pbat_t(i)))/eta_c]); end
3, Operation results
4, matlab version and references
1 matlab version
2014a
2 references
[1] Steamed stuffed bun Yang, Yu Jizhou, Yang Shan Intelligent optimization algorithm and its MATLAB example (2nd Edition) [M]. Electronic Industry Press, 2016
[2] Zhang Yan, Wu Shuigen MATLAB optimization algorithm source code [M] Tsinghua University Press, 2017