Introduction:
In learning and working, we can use the drawing function in MATLAB to process the data conveniently into the desired two-dimensional or three-dimensional graphics, so that we can analyze the data more intuitively. This paper mainly summarizes the use of two-dimensional drawing function.
Summary of two-dimensional drawing functions:
Code implementation:
[note]: each function provides at least one usage instance. When using, be careful to remove the comment symbol% in front of the code.
clear all; clc; %-------------------------- % x = 0 : pi / 100 : 2 * pi; % y = sin(x); % plot(x, y); %-------------------------- % t = -pi : pi / 100; pi; % x = t .* cos(3 * t); % y = t .* sin(t) .* sin(t); % plot(x, y); %-------------------------- % x = linspace(0, 2 * pi, 100); % y = [sin(x); cos(x)]; % plot(x, y); %-------------------------- % t = linspace(0, 2 * pi, 100); % x = [t; t]'; % y = [sin(t); cos(t)]'; % plot(x, y); %--------------------------- % x = 0 : pi / 100 : 2 * pi; % y = exp(j * x); % plot(y); %--------------------------- % t = 0 : pi / 100 : 2 * pi; % x = exp(j * t); % y = [x; 2 * x; 3 * x]'; % plot(y); %--------------------------- % x = linspace(0, 2 * pi, 100); % plot(x, sin(x), ':', x, 2 * sin(x), '--', x, 3 * sin(x), '-.', x, 4 * sin(x)); % legend('sin(x)', '2sin(x)', '3sin(x)', '4sin(x)'); %----------------------------- % x = 0 : pi / 100 : 2 * pi; % y1 = 2 * exp(-0.5 * x); % y2 = -2 * exp(-0.5 * x); % y3 = 2 * exp(-0.5 * x) .* sin(2 * pi * x); % plot(x, y1, '--', x, y2, '--', x, y3); % % axis off; %-------------------------------------------- % x1 = 0 : pi / 100 : 3 * pi; % x2 = 0 : pi / 100 : 3 * pi; % y1 = exp(-0.5 * x1) .* sin( 2 * pi * x1); % y2 = 1.5 * exp(-0.1 * x2) .* sin(x2); % plotyy(x1, y1, x2, y2); %------------------------------------------- % x = linspace(0, 10, 100); % y = []; % for x0 = x % if x0 < 4 % y = [y, sqrt(x0)]; % elseif x0 < 6 % y = [y, 2]; % elseif x0 < 8 % y = [y, 5 - x0 / 2]; % elseif x0 >= 8 % y = [y, 1]; % end % end % plot(x, y); % axis([0, 10, 0, 2.5]); % title('Piecewise function'); % xlabel('x'); ylabel('y'); % text(2, 1.3, 'y = x^{1/2}'); % text(4.5, 2.1, 'y = 2'); % text(7, 1.6, 'y = 5 - x / 2'); % text(8.5, 1.1, 'y = 1'); %-------------------------------- % x = 0 : pi / 100 : 2 * pi; % y1 = sin(x); % y2 = cos(x); % subplot(1, 2, 1); plot(x, y1); % title('sin(x)'); axis([0, 2 * pi, -1, 1]); % % subplot(1, 2, 2); plot(x, y2); % title('cos(x)'); axis([0, 2 * pi, -1, 1]); %-------------------------------------------- % x = 0 : 0.35 : 7; % y = exp(-0.5 * x); % subplot(2, 2, 1); bar(x, y); % subplot(2, 2, 2); stairs(x, y); % subplot(2, 2, 3); stem(x, y); % subplot(2, 2, 4); fill(x, y, 'b'); %-------------------------------------------- % theta = 0 : pi / 100 : 2 * pi; % rho = theta; % polar(theta, rho); %------------------------------------------- % x = 0 : 0.01 : 10; % y = 10 * x .* x; % y = 10 * x^2 % subplot(2, 2, 1); plot(x, y); % subplot(2, 2, 2); semilogx(x, y); % subplot(2, 2, 3); semilogy(x, y); % subplot(2, 2, 4); loglog(x, y); %-------------------------------------------------------------- % subplot(2, 2, 1); fplot(@(x)sin(x), [0, 2 * pi]); % subplot(2, 2, 2); fplot(@(x)[sin(x), cos(x)], [0, 2 * pi]); % %Figure 3, 4 By contrast, Figure 3 shows more details. % subplot(2, 2, 3); fplot(@(x)cos(tan(pi * x)), [-0.4, 1.4]); % x = -0.4 : 0.01 : 1.4; % subplot(2, 2, 4); plot(x, cos(tan(pi * x))); %-------------------------------------------------------------- subplot(1, 2, 1); pie([0.1, 0.2, 0.3, 0.2, 0.15, 0.05]); subplot(1, 2, 2); compass([1 + j, -2 + 3i, -2-3j, 2-3j]);